Skip to main content
Log in

Hydrogen-rich saline solution attenuates renal ischemia–reperfusion injury

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Renal ischemia–reperfusion (I/R), an important cause of acute kidney injury, is unavoidable during various types of operations, including renal transplantation, surgical revascularization of the renal artery, partial nephrectomy, and treatment of suprarenal aortic aneurysms. Exacerbation of I/R injury is mediated by reactive oxygen species (ROS). A recent study has shown that hydrogen has antioxidant properties. In this study, we tested the hypothesis that a hydrogen-rich saline solution (HRSS) attenuates renal I/R injury in a rodent model.

Methods

Rats were treated with an intravenous injection of HRSS or control saline solution followed by renal I/R. After 24 h of treatment, we performed a histological examination and transmission electron microscopy, and measured serum levels of 8-OHdG.

Results

Histological analysis revealed a marked reduction of interstitial congestion, edema, inflammation, and hemorrhage in renal tissue harvested 24 h after HRSS treatment compared to saline administration. Renal I/R injury, which led to altered mitochondrial morphology, was also inhibited by HRSS. Furthermore, serum 8-OHdG levels were significantly lower in rats treated with HRSS and subjected to renal I/R.

Conclusions

These protective effects were likely due to the antioxidant properties of HRSS. These results suggest that HRSS is a potential therapeutic candidate for treating various I/R diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sharples EJ, Thiemermann C, Yaqoob MM. Mechanisms of disease: cell death in acute renal failure and emerging evidence for a protective role of erythropoietin. Nat Clin Pract Nephrol. 2005;1:87–97.

    Article  CAS  PubMed  Google Scholar 

  2. Perico N, Cattaneo D, Sayegh MH, Remuzzi G. Delayed graft function in kidney transplantation. Lancet. 2004;364:1814–27.

    Article  PubMed  Google Scholar 

  3. Lu CY, Penfield JG, Kielar ML, Vazquez MA, Jeyarajah DR. Hypothesis: is renal allograft rejection initiated by the response to injury sustained during the transplant process? Kidney Int. 1999;55:2157–68.

    Article  CAS  PubMed  Google Scholar 

  4. Lameire N, Van Biesen W, Vanholder R. The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol. 2006;2:364–77.

    Article  PubMed  Google Scholar 

  5. Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, Brodsky S, Goligorsky MS. Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol. 2001;281:F948–57.

    CAS  PubMed  Google Scholar 

  6. Devarajan P. Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol. 2006;17:1503–20.

    Article  CAS  PubMed  Google Scholar 

  7. Rodrigo R, Bosco C. Oxidative stress and protective effects of polyphenols: comparative studies in human and rodent kidney. A review. Comp Biochem Physiol C Toxicol Pharmacol. 2006;142:317–27.

    Article  PubMed  CAS  Google Scholar 

  8. Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol. 2003;14:2199–210.

    Article  PubMed  Google Scholar 

  9. Montagna G, Hofer CG, Torres AM. Impairment of cellular redox status and membrane protein activities in kidneys from rats with ischemic acute renal failure. Biochem Biophys Acta. 1998;1407:99–108.

    CAS  PubMed  Google Scholar 

  10. Erdogan H, Fadillioglu E, Yagmurca M, Uçar M, Irmak MK. Protein oxidation and lipid peroxidation after renal ischemia–reperfusion injury: protective effects of erdosteine and N-acetylcysteine. Urol Res. 2006;34:41–6.

    Article  CAS  PubMed  Google Scholar 

  11. Doi K, Suzuki Y, Nakao A, Fujita T, Noiri E. Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney. Kidney Int. 2004;65:1714–23.

    Article  CAS  PubMed  Google Scholar 

  12. Valavanidis A, Vlachogianni T, Fiotakis C. 8-Hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27:120–39.

    Google Scholar 

  13. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13:688–94.

    Article  CAS  PubMed  Google Scholar 

  14. Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S. Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun. 2007;361:670–4.

    Article  CAS  PubMed  Google Scholar 

  15. Cai J, Kang Z, Liu WW, Luo X, Qiang S, Zhang JH, Ohta S, Sun X, Xu W, Tao H, Li R. Hydrogen therapy reduces apoptosis in neonatal hypoxia–ischemia rat model. Neurosci Lett. 2008;441:167–72.

    Google Scholar 

  16. Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S, Makino S, Ohta S, Ogawa S, Fukuda K. Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia–reperfusion injury. Biochem Biophys Res Commun. 2008;373:30–5.

    Article  CAS  PubMed  Google Scholar 

  17. Erdogan H, Fadillioglu E, Yagmurca M, Uçar M, Irmak MK. Protein oxidation and lipid peroxidation after renal ischemia–reperfusion injury: protective effects of erdosteine and N-acetylcysteine. Urol Res. 2006;34:41–6.

    Article  CAS  PubMed  Google Scholar 

  18. Lerman L, Textor SC. Pathophysiology of ischemic nephropathy. Urol Clin North Am. 2001;28:793–803.

    Article  CAS  PubMed  Google Scholar 

  19. White BC, Sullivan JM, DeGracia DJ, O’Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci. 2000;179:1–33.

    Article  CAS  PubMed  Google Scholar 

  20. Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004;339:1–9.

    Article  CAS  PubMed  Google Scholar 

  21. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44.

    Article  CAS  PubMed  Google Scholar 

  22. Davidson SM, Duchen MR. Endothelial mitochondria: contributing to vascular function and disease. Circ Res. 2007;100:1128–41.

    Article  CAS  PubMed  Google Scholar 

  23. Doi K, Suzuki Y, Nakao A, Fujita T, Noiri E. Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney. Kidney Int. 2004;65:1714–23.

    Article  CAS  PubMed  Google Scholar 

  24. Minhaz U, Tanaka M, Tsukamoto H, Watanabe K, Koide S, Shohtsu A, Nakazawa H. Effect of MCI-186 on postischemic reperfusion injury in isolated rat heart. Free Radic Res. 1996;24:361–7.

    Article  CAS  PubMed  Google Scholar 

  25. Yamamoto T, Yuki S, Watanabe T, Mitsuka M, Saito KI, Kogure K. Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral ischemia. Brain Res. 1997;762:240–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Hiroaki Kawazato and Aiko Yasuda for their helpful advice on the preparation of kidney tissue specimens. We also thank Dr. Tomohisa Uchida for scoring renal histology. This study was supported by Grants-in-Aid for Scientific Research (Kakenhi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Hagiwara.

About this article

Cite this article

Shingu, C., Koga, H., Hagiwara, S. et al. Hydrogen-rich saline solution attenuates renal ischemia–reperfusion injury. J Anesth 24, 569–574 (2010). https://doi.org/10.1007/s00540-010-0942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-010-0942-1

Keywords

Navigation