Skip to main content

Advertisement

Log in

Surface characterization and friction of a bio-inspired reversible adhesive tape

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A polyvinylsilixane sample fabricated to replicate biological attachment systems consisting of microscale pillars (about 230/mm2) approximately 50 μm in diameter, 70 μm in height, and 60 μm center-to-center was characterized for surface roughness, friction force, and contact angle and compared to an unstructured sample. Macroscale coefficient of kinetic friction of the structured sample was found to be almost four times greater than the unstructured sample. This increase was determined to be a result of the structured roughness of the sample and not the random nanoroughness. The structured roughness also increased the hydrophobicity of the structured sample, which is important for self cleaning to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamson AV (1990) Physical chemistry of surfaces. Wiley, New York

    Google Scholar 

  • Arzt E, Gorb E, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci USA 100:10603–10606

    Article  Google Scholar 

  • Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42:1081–1090

    Article  Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    Article  Google Scholar 

  • Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99:12252–12256

    Article  Google Scholar 

  • Autumn K, Buehler M, Cutkosky M, Fearing R, Full RJ, Goldman D, Groff R, Provancher W, Rizzi AA, Sranli U, Saunders A, Koditschek DE (2005) Robotics in scansorial environments. Proc SPIE 5804:291–302

    Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  Google Scholar 

  • Bergmann PJ, Irschick DJ (2005) Effects of temperature on maximum clinging ability in a diurnal gecko: evidence for a passive clinging mechanism? J Exp Zool 303A:785–791

    Article  Google Scholar 

  • Bhushan B (1984) Influence of test parameters on the measurement of the coefficient of friction of magnetic tapes. Wear 93:81–99

    Article  Google Scholar 

  • Bhushan B (1996) Tribology and mechanics of magnetic storage devices, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bhushan B (1999) Handbook of micro/nanotribology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Bhushan B (2002) Introduction to tribology. Wiley, New York

    Google Scholar 

  • Bhushan B (2003) Adhesion and stiction: mechanisms, measurement techniques and methods for reduction. J Vac Sci Technol B 21:2262–2296

    Article  Google Scholar 

  • Bhushan B (2005) Introduction to nanotribology and nanomechanics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bhushan B, Jung YC (2006) Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces. Nanotechnology 17:2758–2772

    Article  Google Scholar 

  • Bhushan B, Peressadko AG, Kim TW (2006) Adhesion analysis of two-level hierarchical morphology in natural attachment systems for smart adhesion. J Adhes Sci Technol (in press)

  • Burton Z, Bhushan B (2005) Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems. Nano Lett 5:1607–1613

    Article  Google Scholar 

  • Dellit WD (1934) Zur anatomie und physiologie der Geckozehe. Jena Z Naturw 68:613–658

    Google Scholar 

  • Full RJ, Fearing RS, Kenny TW, Autumn K (2004) Adhesive microstructure and method of forming same, US Patent #6737160

  • Gao H, Wang X, Yao H, Gorb S, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37:275–285

    Article  Google Scholar 

  • Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461–463

    Article  Google Scholar 

  • Gennaro JGJ (1969) The gecko grip. Nat Hist 78:36–43

    Google Scholar 

  • Glassmaker NJ, Jagota A, Hui CY, Kim J (2004) Design of biomimetic fibrillar interfaces: 1. Making contact. J R Soc Interface 1:23–33

    Article  Google Scholar 

  • Glassmaker NJ, Jagota A, Hui CY (2005) Adhesion enhancement in a biomimetic fibrillar interface. Acta Biomat 1:367–375

    Article  Google Scholar 

  • Gorb S (2001) Attachment devices of insect cuticle. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Hansen WR, Autumn K (2005) Evidence for self-cleaning in gecko setae. Proc Natl Acad Sci USA 102:385–389

    Article  Google Scholar 

  • Hiller U (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z Morphol Tiere 62:307–362

    Article  Google Scholar 

  • Hinds WC (1982) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New York

    Google Scholar 

  • Hora SL (1923) The adhesive apparatus on the toes of certain geckos and tree frogs. J Proc Asiat Soc Beng 9:137–145

    Google Scholar 

  • Huber G, Gorb SN, Spolenak R, Arzt E (2005a) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2–4

    Article  Google Scholar 

  • Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E (2005b) Evidence for capillarity contributions to gecko adhesion from single spatula and nanomechanical measurements. Proc Natl Acad Sci USA 102:16293–16296

    Article  Google Scholar 

  • Hui CY, Glassmaker NJ, Tang T, Jagota A (2004) “Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion.” J R Soc Interface 1:35–48

    Article  Google Scholar 

  • Irschick DJ, Austin CC, Petren K, Fisher RN, Losos JB, Ellers O (1996) A comparative analysis of clinging ability among pad-bearing lizards. Biol J Linn Soc 59:21–35

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic San Diego

    Google Scholar 

  • Jaenicke R (1998) Atmospheric aerosol size distribution. In: Harrison RM, van Grieken R (eds) Atmospheric particles. Wiley, New York, pp 1–29

  • Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42:1140–1145

    Article  Google Scholar 

  • Menon C, Murphy M, Sitti M (2004) Gecko inspired surface climbing robots. In: IEEE international conference on robotics biomimetics, August 22–26, pp 431–436

  • Northen MT, Turner KL (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16:1159–1166

    Article  Google Scholar 

  • Northen MT, Turner KL (2006) Batch fabrication and characterization of nanostructures for enhanced adhesion. Curr Appl Phys 6:379–383

    Article  Google Scholar 

  • Nosonovsky M, Bhushan B (2005) Roughness optimization for biomimetic superhydrophobic surfaces. Microsyst Technol 11:535–549

    Article  Google Scholar 

  • Nosonovsky M, Bhushan B (2006) Wetting of rough three-dimensional superhydrophobic surfaces. Microsyst Technol 12:273–281

    Article  Google Scholar 

  • Peressadko AG (2005) Max Planck Institute for Metals Research, Stuttgart, personal communications

  • Persson BNJ, Gorb S (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119:11437–11444

    Article  Google Scholar 

  • Ruibal R, Ernst V (1965) The structure of the digital setae of lizards. J Morph 117:271–294

    Article  Google Scholar 

  • Russell AP (1975) A contribution to the functional morphology of the foot of the tokay, Gekko gecko. J Zool Lond 176:437–476

    Article  Google Scholar 

  • Schleich HH, Kästle W (1986) Ultrastrukturen an Gecko-Zehen. Amphibia Reptilia 7:141–166

    Google Scholar 

  • Schmidt HR (1904) Zur Anatomie und Physiologie der Geckopfote. Jena Z Naturw 39:551

    Google Scholar 

  • Simmermacher G (1884) Untersuchungen uber haftapparate an tarsalgliedern von insekten. Zeitschr Wiss Zool 40:481–556

    Google Scholar 

  • Sitti M (2003) High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly. In: Proceedings of IEEE/ASME advanced mechatronics conference, vol 2, July 20–24, pp 886–890

  • Sitti M, Fearing RS (2003) Synthetic gecko foot-hair for micro/nano structures for future wall-climbing robots. In: Proceedings of IEEE international conference on robotics and automation, vol 1, September 14–19, pp 1164–1170

  • Smith AM, Callow JA (2006) Biological adhesives. Springer, Berlin Heidelberg Germany

    Google Scholar 

  • Stork NE (1980) Experimental analysis of adhesion of Chrysolina polita on a variety of surfaces. J Exp Biol 88:91–107

    Google Scholar 

  • Sun W, Neuzil P, Kustandi TS, Oh S, Samper VD (2005) The nature of the gecko lizard adhesive force. Biophys J 89:L14–L17

    Article  Google Scholar 

  • Wagler J (1830) Naturliches System der Amphibien. J. G. Cotta’schen Buchhandlung, Munich

    Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Indust Eng Chem 28:988–994

    Article  Google Scholar 

  • Williams EE, Peterson JA (1982) Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215:1509–1511

    Article  Google Scholar 

  • Yurdumakan B, Raravikar NR, Ajayan PM, Dhinojwala A (2005) Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Comm 2005:3799–3801

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Andrei G. Peressadko of the Max Planck Institute for Metals Research, Stuttgart, Germany, for providing the samples. The authors also thank Yong-Chae Jung and Dr. Zhenhua Tao for experimental assistance and helpful discussions. SEM images were obtained by Dr. Manuel Palacio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhushan, B., Sayer, R.A. Surface characterization and friction of a bio-inspired reversible adhesive tape. Microsyst Technol 13, 71–78 (2007). https://doi.org/10.1007/s00542-006-0256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-006-0256-2

Keywords

Navigation