Skip to main content

Advertisement

Log in

The mycorrhizal community in a forest chronosequence of Sitka spruce [Picea sitchensis (Bong.) Carr.] in Northern England

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Demography and fungal diversity of the belowground ectomycorrhizal community in a chronosequence of Sitka spruce [Picea sitchensis (Bong.) Carr.] in Northumberland, Northern England, were analysed; mycorrhizal root samples were taken from 6-, 12-, 30- and 40-year-old stands, and fungal fruiting bodies were collected in autumn to complement the survey. Naturally germinated seedlings less than 1 year of age (taken from the 30-year-old stand) were also examined. A total of 118,000 mycorrhizal root tips were extracted from 40 soil cores (ten per age class) and from the complete root systems of 25 seedlings and separated into active and senescent root tips according to their morphology and anatomy. Active tips were distinguished according to their mycobionts which were characterised and identified microscopically. Although almost 100% of all fine roots were mycorrhizal, EM fungal diversity throughout the chronosequence was low, consisting of a total of 16 species of which three were only found as fruiting bodies. Of the six mycobionts found most regularly below ground, Tylospora fibrillosa was the most common, colonising about 70% of all root tips and more than 90% of those of seedlings and young trees. Root density and mycorrhizal diversity increased, but percentage of vital root tips decreased with increasing tree age, levelling off in the 30- and 40-year-old stand. Among the five subdominant fungal species, Dermocybe crocea was found to have its peak of distribution in the 12-year-old stand and Russula emetica, Lactarius rufus, Hymenoscyphus ericae agg. and the unidentified Piceirhiza sulfo-incrustata in the 30- and 40-year-old stands. The possible correlations between the mycorrhizal community structure and biotic and abiotic factors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agerer R (1987–2002) (ed) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Schwäbisch Gmünd

    Google Scholar 

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Method Microbiol 23:26–73

    Google Scholar 

  • Armstrong W, Booth TC, Priestley P, Read DJ (1975) The relationship between soil aeration, stability and growth of Sitka spruce (Picea sitchensis (Bong.) Carr.) on upland peaty gleys. J Appl Ecol 12:585–591

    Google Scholar 

  • Baar J, Horton TR, Kretzer AM, Bruns TD (1999) Mycorrhizal colonisation of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol 143:409–418

    Article  Google Scholar 

  • Baxter JW, Steward TA, Pickett TA, Carreiro MM, Dighton J (1999) Ectomycorrhizal diversity and community structure in oak forest stands exposed to contrasting anthropogenic impacts. Can J Bot 77:771–782

    Google Scholar 

  • Brandrud TE, Lindström H, Marklund H, Melot J, Muskos S (1989–1998) Cortinarius. Flora Photographica vols. 1–4, Matfors

  • Cairney JWG, Alexander IJ (1992a) A study of ageing of spruce (Picea sitchensis (Bong.) Carr.) ectomycorrhizas. II. Carbohydrate allocation in ageing Picea sitchensis/Tylospora fibrillosa (Burt.) Donk ectomycorrhizas. New Phytol 122:153–158

    Article  CAS  Google Scholar 

  • Cairney JWG, Alexander IJ (1992b) A study of ageing of spruce (Picea sitchensis (Bong.) Carr.) ectomycorrhizas. III. Phosphate absorption and transfer in ageing Picea sitchensis/Tylospora fibrillosa (Burt.) Donk ectomycorrhizas. New Phytol 122:159–164

    Article  CAS  Google Scholar 

  • Courtecuisse R, Duhem B (1995) Mushrooms and toadstools of Britain and Europe. Harper Collins Publishers, London, 480 pp

  • Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562

    Article  Google Scholar 

  • Dahlberg A (2002) Effects of fire on ectomycorrhizal fungi in Fennoscandian boreal forests. Silva Fenn 36(1):69–80

    Article  Google Scholar 

  • Dighton J, Mason PA (1985) Mycorrhizal dynamics during forest tree development. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds) Developmental biology of higher fungi. Cambridge University Press, Cambridge

    Google Scholar 

  • Dighton J, Poskitt JM, Howard DM (1986) Changes in occurrence of basidiomycete fruit bodies during forest stand development: with specific reference to mycorrhizal species. Trans Br Mycol Soc 87(1):163–171

    Article  Google Scholar 

  • Downes GM, Alexander IJ, Cairney JWG (1992) A study of ageing of spruce (Picea sitchensis (Bong.) Carr.) ectomycorrhizas. I. Morphological and cellular changes in mycorrhizas formed by Tylospora fibrillosa (Burt.) Donk and Paxillus involutus (Batsch. ex Fr.) Fr. New Phytol 122:141–152

    Article  Google Scholar 

  • Eberhardt U, Walter L, Kottke I (1999) Molecular and morphological discrimination between Tylospora fibrillosa and Tylospora asterophora mycorrhizae. Can J Bot 77:11–21

    CAS  Google Scholar 

  • Erland S, Taylor AFS (2002) Diversity of ectomycorrhizal fungal communities in relation to the abiotic environment. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 163–200

    Chapter  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583

    Article  Google Scholar 

  • Grogan P, Baar J, Bruns TD (2000) Below-ground ectomycorrhizal community structure in a recently burned bishop pine forest. J Ecol 88:1051–1062

    Article  Google Scholar 

  • Gronbach E (1988) Charakterisierung und Identifizierung von Ektomykorrhizen in einem Fichtenbestand mit Untersuchungen zur Merkmalsvariabilität in sauer beregneten Flächen. Bibl Mycol 125, 217 pp

    Google Scholar 

  • Hansen L, Knudsen H (1992) Nordic macromycetes. Vol. 2. Nordsvamp, Copenhagen, 474 pp

  • Haug I (2002) Identification of Picea-ectomycorrhizae by comparing DNA-sequences. Mycol Prog 1(2):167–178

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black box. Mol Ecol 10(8):1855–1871

    Article  CAS  PubMed  Google Scholar 

  • Ingleby K, Mason PA, Last FT, Fleming LV (1990) Identification of ectomycorrhizas. ITE research publication no. 5, HMSO, London, 112 pp

  • Jumpponen A, Trappe JM, Cazares E (2002) Occurrence of ectomycorrhizal fungi on the forefront of retreating lyman glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12(1):43–49

    Article  PubMed  Google Scholar 

  • Kernaghan G, Harper KA (2001) Community structure of ectomycorrhizal fungi across an alpine/subalpine ecotone. Ecography 24:181–188

    Article  Google Scholar 

  • Kranabetter JM, Wylie T (1998) Ectomycorrhizal community structure across forest openings on naturally regenerated western hemlock seedlings. Can J Bot 76:189–196

    Google Scholar 

  • Krieglsteiner G (2000) Die Großpilze Baden-Württembergs. Vol. 2. Ulmer Verlag, Stuttgart, 620 pp

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MJ (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Moser M (1983) Die Röhrlinge und Blätterpilze. Kleine Kryptogamenflora IIb/2. Gustav Fischer Verlag Stuttgart, New York, 533 pp

  • Norvell LL, Exeter RL (2004) Ectomycorrhizal epigeous basidiomycete diversity in Oregon coast range Pseudotsuga menziesii forests—preliminary observations. Mem N Y Bot Gard 89:159–189

    Google Scholar 

  • Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79:1134–1151

    Google Scholar 

  • Pregitzer KS (2002) Fine roots of trees—a new perspective. New Phytol 154:267–270

    Article  Google Scholar 

  • Sittig U (1998) Zur saisonalen Dynamik von Ektomykorrhizen der Buche (Fagus sylvativa L.). Ber. Forschungszentrum Waldökosysteme, Reihe A, Band 162, 119 pp

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London, 605 pp

  • Smith JE, Molina R, Huso MMP, Luoma DL, McKay D, Castellano MA, Lebel T, Valachovic Y (2002) Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A. Can J Bot 80:186–204

    Article  Google Scholar 

  • Stendell ER, Horton TR, Bruns TD (1999) Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycol Res 103:1353–1359

    Article  Google Scholar 

  • Taylor AFS, Alexander IJ (1990) Demography and population dynamics of ectomycorrhizas of Sitka spruce fertilized with N. Agric Ecosyst Environ 28:493–496

    Article  Google Scholar 

  • Taylor AFS, Martin F, Read DJ (2000) Fungal diversity in ecto-mycorrhizal communities of Norway spruce (Picea abies (L.) Karst.) and Beech (Fagus sylvatica L.) along north–south transects in Europe. In: Schulze ED (ed) Ecological studies, vol. 142. Springer, Berlin Heidelberg New York, pp 343–365

    Google Scholar 

  • Ullrich A, Münzenberger B, Hüttl RF (1997) Die Vitalität von Ektomykorrhizen der Kiefer (Pinus sylvestris L.) auf Rekultivierungsflächen des Lausitzer Braunkohlereviers. In: Merbach W (ed) Pflanzenernährung, Wurzelleistung und Exsudation. 8. Borkheider Seminar zur Ökophysiologie des Wurzelraumes. B.G. Teubner Verlagsgesellschaft Stuttgart, Leipzig, pp 115–122

    Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401

    Article  Google Scholar 

  • Vrålstad T, Fossheim T, Schumacher T (2000) Piceirhiza bicolorata—the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145:549–563

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the European project Forest Carbon and Nitrogen Trajectories (FORCAST, 5th Framework) which is part of the CARBOEUROPE project cluster. The authors like to thank David Hollingworth and Glyn Woods, University of Sheffield, for processing and digitalising the photomicrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Götz Palfner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palfner, G., Casanova-Katny, M.A. & Read, D.J. The mycorrhizal community in a forest chronosequence of Sitka spruce [Picea sitchensis (Bong.) Carr.] in Northern England. Mycorrhiza 15, 571–579 (2005). https://doi.org/10.1007/s00572-005-0364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-005-0364-3

Keywords

Navigation