Skip to main content
Log in

The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus

  • SSE Basic Science Award
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

It has long been known that very acidic conditions can be found in degenerate discs. The effect of these acid conditions on matrix turnover are, however, unknown. This study aimed to examine the effect of acidity on production of matrix components and on agents which break down the matrix in order to gain insight into the effect of pathological values of pH on matrix turnover. Cells were isolated from the nucleus of bovine discs and from bovine articular cartilage, embedded in alginate beads and cultured at pH levels maintained within the ranges seen in normal and pathological discs: pH 7.4–pH 6.3 for 48 h. Rates of sulphated glycosaminoglycan (GAG) and protein synthesis were measured, as well as rates of production of some agents involved in matrix breakdown, i.e. total and activated matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). The results showed that acid conditions had a profound effect on cell matrix turnover; at pH 6.4, total production of most species measured was inhibited by more than 50% compared to production at pH 7.2; production of sulphated GAGs and of TIMP-1 fell by >90%. However production of active metalloproteinases by disc cells was relatively insensitive to pH, with activity at pH 6.3 not statistically different from that at pH 7.2. These findings indicate that exposure to acid conditions appears particularly deleterious for the disc matrix, as it inhibits the disc cells from synthesising functionally important molecules such as the sulphated GAGs but does not prevent the production of agents able to degrade matrix components. The low values of pH seen in some degenerate discs are thus likely to be involved in breakdown of the disc matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Ariga K, Yonenobu K, Nakase T, Kaneko M, Okuda S, Uchiyama Y, Yoshikawa H (2001) Localization of cathepsins D, K, and L in degenerated human intervertebral discs. Spine 26:2666–2672

    Article  CAS  PubMed  Google Scholar 

  2. Bartels EM, Fairbank JCT, Winlove CP, Urban JPG (1998) Oxygen and lactate concentrations measured in vivo in the intervertebral discs of scoliotic and back pain patients. Spine 23:1–8

    Article  CAS  PubMed  Google Scholar 

  3. Beekman B, Verzijl N, de Roos JA, Tekoppele JM (1998) Matrix degradation by chondrocytes cultured in alginate: IL-1 beta induces proteoglycan degradation and proMMP synthesis but does not result in collagen degradation. Osteoarthritis Cartilage 6:330–340

    CAS  PubMed  Google Scholar 

  4. Boos N, Wallin A, Gbedegbegnon T, Aebi M, Boesch C (1993) Quantitative MR imaging of lumbar intervertebral disks and vertebral bodies: influence of diurnal water content variations. Radiology 188:351–354

    CAS  PubMed  Google Scholar 

  5. Boustany N, Gray ML, Black AC, Hunziker EB (1995) Correlation between synthetic activity and glycosaminoglycan concentration in epiphyseal cartilage raises questions about the regulatory role of interstitial pH. J Orthop Res 13:733–739

    CAS  PubMed  Google Scholar 

  6. Burton-Wurster N, Lust G (1990) Fibronectin and proteoglycan synthesis in long term cultures of cartilage explants in Ham's F12 supplemented with insulin and calcium: effects of the addition of TGF-β. Arch Biochem Biophys 283:27–33

    CAS  PubMed  Google Scholar 

  7. Cawston T, Billington C, Cleaver C, Elliott S, Hui W, Koshy P, Shingleton B, Rowan A (1999) The regulation of MMPs and TIMPs in cartilage turnover. Ann N Y Acad Sci 878:120–129

    CAS  PubMed  Google Scholar 

  8. Crean JK, Roberts S, Jaffray DC, Eisenstein SM, Duance VC (1997) Matrix metalloproteinases in the human intervertebral disc: role in disc degeneration and scoliosis. Spine 22:2877–2884

    CAS  PubMed  Google Scholar 

  9. Diamant B, Karlsson J, Nachemson A (1968) Correlation between lactate levels and pH in discs of patients with lumbar rhizopathies. Experientia 24:1195–1196

    CAS  PubMed  Google Scholar 

  10. Eyre DR, Matsui Y, Wu JJ (2001) Collagen polymorphisms of the intervertebral disc. Biochem Soc Trans 30:844–848

    Google Scholar 

  11. Goupille P, Jayson MI, Valat JP, Freemont AJ (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine 23:1612–1626

    Google Scholar 

  12. Gray M, Pizzanelli A, Grodzinsky A, Lee R (1988) Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res 6:777–792

    CAS  PubMed  Google Scholar 

  13. Grodzinsky AJ (1983) Electromechanical and physicochemical regulation of cartilage strength and metabolism. CRC Crit Rev Bioeng 9:133–199

    CAS  Google Scholar 

  14. Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K (1997) Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine 22:1085–1091

    CAS  PubMed  Google Scholar 

  15. Holm S, Nachemson A (1988) Nutrition of the intervertebral disc: acute effects of cigarette smoking. An experimental animal study. Ups J Med Sci 93:91–99

    CAS  PubMed  Google Scholar 

  16. Holm S, Urban JPG (1987) The intervertebral disc: factors contributing to its nutrition and matrix turnover. In: Helminen HJ, Tammi M, Kiviranta I, Saamanen A-M, Paukkonen K, Jurvelin J (eds) Joint loading: biology and health of articular structures. Wright, Bristol, pp 187–226

  17. Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8:101–119

    CAS  PubMed  Google Scholar 

  18. Horner HA, Roberts S, Bielby RC, Menage J, Evans H, Urban JP (2002) Cells from different regions of the intervertebral disc: effect of culture system on matrix expression and cell phenotype. Spine 27:1018–1028

    Article  PubMed  Google Scholar 

  19. Ichimura K, Tsuji H, Matsui H, Makiyama N (1991) Cell culture of the intervertebral disc of rats: factors influencing culture, proteoglycan, collagen, and deoxyribonucleic acid synthesis. J Spinal Disord 4:428–436

    CAS  PubMed  Google Scholar 

  20. Ishihara H, Urban JP (1999) Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res 17:829–835

    CAS  PubMed  Google Scholar 

  21. Ishihara H, McNally DS, Urban JP, Hall AC (1996) Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk. J Appl Physiol 80:839–846

    CAS  PubMed  Google Scholar 

  22. Ishihara H, Warensjo K, Roberts S, Urban JP (1997) Proteoglycan synthesis in the intervertebral disk nucleus: the role of extracellular osmolality. Am J Physiol 272:C1499–C1506

    CAS  PubMed  Google Scholar 

  23. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF, Evans CH (1996) Herniated lumbar intervertebral discs spontaneously produced matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 21:271–277

    CAS  PubMed  Google Scholar 

  24. Kitano T, Zerwekh JE, Usui Y, Edwards ML, Flicker PL, Mooney V (1993) Biochemical changes associated with the symptomatic human intervertebral disk. Clin Orthop 293:327–377

    PubMed  Google Scholar 

  25. Kitano T, Zerwekh JE, Usui Y, Edwards ML, Flicker PL, Mooney V (1993) Biochemical changes associated with the symptomatic human intervertebral disk. Clin Orthop 293:372–377

    Google Scholar 

  26. Kleiner DE, Stetler-Stevenson WG (1994) Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem 218:325–329

    Article  CAS  PubMed  Google Scholar 

  27. Knight CG, Willenbrock F, Murphy G (1992) A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Letters 296:263–266

    Article  CAS  PubMed  Google Scholar 

  28. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  29. Lee RB, Urban JP (1997) Evidence for a negative Pasteur effect in articular cartilage. Biochem J 321(Pt 1):95–102

    PubMed  Google Scholar 

  30. Liu GZ, Ishihara H, Osada R, Kimura T, Tsuji H (2001) Nitric oxide mediates the change of proteoglycan synthesis in the human lumbar intervertebral disc in response to hydrostatic pressure. Spine 26:134–141

    CAS  PubMed  Google Scholar 

  31. Maldonado BA, Oegema TR Jr (1992) Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J Orthop Res 10:677–690

    CAS  PubMed  Google Scholar 

  32. Maroudas A (1980) Physical chemistry of articular cartilage and the intervertebral disc. In: Sokoloff L (ed) The joints and synovial fluid. II. Academic Press, New York, pp 240–293

  33. Maroudas A (1981) Metabolism of cartilaginous tissues, a quantitative approach. In: Maroudas A, Holborow J (eds) Studies in joint disease. 1. Pitman Medical, London, pp 59–86

  34. Matsumoto T, Kawakami M, Kuribayashi K, Takenaka T, Tamaki T (1999) Cyclic mechanical stretch stress increases the growth rate and collagen synthesis of nucleus pulposus cells in vitro. Spine 24:315–319

    Article  CAS  PubMed  Google Scholar 

  35. Melrose J, Ghosh P, Taylor T-KF (1987) Neutral proteinases of the human intervertebral disc. Biochem Biophys Act 923:483–495

    Article  CAS  Google Scholar 

  36. Melrose J, Taylor T-KF, Ghosh P (1996) Variation of intervertebral disc serine proteinase inhibitory proteins with ageing in a chondrodystrophoid (beagle) and a non-chondrodystrophoid (greyhound) canine breed. Gerontology 42:322–329

    CAS  PubMed  Google Scholar 

  37. Melrose J, Ghosh P, Taylor TK (2001) A comparative analysis of the differential spatial and temporal distributions of the large (aggrecan, versican) and small (decorin, biglycan, fibromodulin) proteoglycans of the intervertebral disc. J Anat 198:3–15

    CAS  PubMed  Google Scholar 

  38. Oegema TR Jr (1993) Biochemistry of the intervertebral disc. Clin Sports Med 12:419–439

    PubMed  Google Scholar 

  39. Ohshima H, Urban JPG (1992) Effect of lactate concentrations and pH on matrix synthesis rates in the intervertebral disc. Spine 17:1079–1082

    CAS  PubMed  Google Scholar 

  40. Ohshima H, Ishihara H, Urban JP, Tsuji H (1993) The use of coccygeal discs to study intervertebral disc metabolism. J Orthop Res 11:332–338

    PubMed  Google Scholar 

  41. Olmarker K, Larsson K (1998) Tumor necrosis factor alpha and nucleus-pulposus-induced nerve root injury. Spine 23:2538–2544

    Article  CAS  PubMed  Google Scholar 

  42. Pattison ST, Melrose J, Ghosh P, Taylor TK (2001) Regulation of gelatinase-a (MMP-2) production by ovine intervertebral disc nucleus pulposus cells grown in alginate bead culture by transforming growth factor-beta(1)and insulin like growth factor-I. Cell Biol Int 25:679–689

    Google Scholar 

  43. Puustjarvi K, Lammi M, Kiviranta I, Helminen HJ, Tammi M (1993) Proteoglycan synthesis in canine intervertebral discs after long distance running training. J Orthop Res 11:738–746

    CAS  PubMed  Google Scholar 

  44. Razaq S, Urban JP, Wilkins RJ (2000) Regulation of intracellular pH by bovine intervertebral disc cells. Cell Physiol Biochem 10:109–115

    Article  CAS  PubMed  Google Scholar 

  45. Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 25:3005–3013

    Article  CAS  PubMed  Google Scholar 

  46. Roughley PJ, Alini M, Antoniou J (2001) The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem Soc Trans 30:869–874

    Google Scholar 

  47. Selard E, Shirazi-Adl AS, Urban JPG (2000) Finite element study of oxgen diffusion in the intervertebral disc. In: Conway T (ed) Advances in bioengineering. IMECE, Orlando, pp 285–286

  48. Stairmand J, Holm S, Urban J (1991) Factors influencing oxygen concentration gradients in the intervertebral disc: a theoretical analysis. Spine 16:444–449

    CAS  PubMed  Google Scholar 

  49. Stefanovic-Racic M, Stadler J, Georgescu HI, Evans CH (1994) Nitric oxide and energy production in articular chondrocytes. J Cell Physiol 159:274–280

    CAS  PubMed  Google Scholar 

  50. Sztrolovics R, Grover J, Cs-Szabo G, Shi SL, Zhang Y, Mort JS, Roughley PJ (2002) The characterization of versican and its message in human articular cartilage and intervertebral disc. J Orthop Res 20:257–266

    Google Scholar 

  51. Tetlow LC, Adlam DJ, Woolley DE (2001) Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage; associations with degenerative changes. Arthritis Rheum 44:585–594

    Article  CAS  PubMed  Google Scholar 

  52. Urban JP, McMullin JF (1985) Swelling pressure of the intervertebral disc: influence of proteoglycan and collagen contents. Biorheology 22:145–157

    CAS  PubMed  Google Scholar 

  53. Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) 2002 SSE Award Competition in Basic Science. Expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320

    Article  CAS  PubMed  Google Scholar 

  54. Wilkins RJ, Hall AC (1995) Control of matrix synthesis in isolated bovine chondrocytes by extracellular and intracellular pH. J Cell Physiol 164:474–481

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Arthritis Research Campaign for support (U0506, U0511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill P. G. Urban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razaq, S., Wilkins, R.J. & Urban, J.P.G. The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus. Eur Spine J 12, 341–349 (2003). https://doi.org/10.1007/s00586-003-0582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-003-0582-3

Keywords

Navigation