Skip to main content
Log in

Effect of nutrient deprivation on the viability of intervertebral disc cells

  • Original Article
  • Disc (experimental)
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

There is evidence that a fall in nutrient supply leads to disc degeneration but little understanding of the effects of nutrient deprivation on the physiology of disc cells which govern the composition of the disc. We examined the effects of changes in glucose and oxygen concentration and pH on the viability and metabolism of cells from bovine nucleus pulposus. Cells isolated from bovine discs and embedded in alginate beads were cultured under oxygen and glucose concentrations from zero to physiological levels and maintained at pH 7.4, pH 6.7, or pH 6.2 for up to 3 days. Interactions between nutrient concentrations were examined in relation to cell viability and lactic acid production. Cell viability was significantly reduced in the absence of glucose, with or without oxygen. Disc cells survived at 0% oxygen, provided that glucose was present, as seen previously. Cell viability decreased if the medium was acidic, more so when combined with low glucose concentrations. The rate of lactic acid production also fell as the pH became acidic and after 24 h or more at low glucose concentrations, but it did not appear to vary with oxygen concentration under the culture conditions used here. Glucose, rather than oxygen, appears to be the nutrient critical for maintaining disc cell viability. However, in an avascular tissue such as the disc, it is unlikely that glucose deprivation will occur alone; it will almost certainly correlate with a fall in oxygen concentration and pH. These results indicate that the combined nutrient and metabolite environment, rather than concentrations of any single nutrient, should be considered when studying cellular physiology in the disc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoki J, Yamamoto I, Kitamura N, Sone T, Itoh H, Torizuka K, Takasu K (1987) End plate of the discovertebral joint: degenerative change in the elderly adult. Radiology 164: 411–414

    PubMed  CAS  Google Scholar 

  2. Baker MS, Feigan J, Lowther DA (1989) The mechanism of chondrocyte hydrogen peroxide damage. Depletion of intracellular ATP due to suppression of glycolysis caused by oxidation of glyceraldehyde-3-phosphate dehydrogenase. J Rheumatol 16: 7–14

    PubMed  CAS  Google Scholar 

  3. Bartels EM, Fairbank JCT, Winlove CP, Urban JPG (1998) Oxygen and lactate concentrations measured in vivo in the intervertebral discs of scoliotic and back pain patients. Spine 23: 1–8

    Article  PubMed  CAS  Google Scholar 

  4. Battie MC, Videman T, Gill K, Moneta GB, Nyman R, Kaprio J, Koskenvuo M (1991) 1991 Volvo Award in clinical sciences. Smoking and lumbar intervertebral disc degeneration: an MRI study of identical twins. Spine 16: 1015–1021

    Article  PubMed  CAS  Google Scholar 

  5. Bibby SR (2002) Cell metabolism and viability in the intervertebral disc. Dr Phil thesis, Oxford University

  6. Brodin H (1955) Paths of nutrition in articular cartilage and intervertebral discs. Acta Orthop Scand 24: 177–183

    PubMed  CAS  Google Scholar 

  7. Brown MD, Tsaltas T (1976) Studies on the permeability of the intervertebral disc during skeletal maturation. Spine 1: 240–244

    Article  Google Scholar 

  8. Casciari JJ, Sotirchos SV, Sutherland RM (1992) Mathematical modeling of microenvironment and growth in emt6/ro multicellular tumor spheroids. Cell Proliferation 25: 1–22

    Article  PubMed  CAS  Google Scholar 

  9. Chelberg MK, Banks GM, Geiger DF, Oegema TR Jr (1995) Identification of heterogeneous cell populations in normal human intervertebral disc. J Anat 186 (Pt 1): 43–53

    PubMed  Google Scholar 

  10. Diamant B, Karlsson J, Nachemson A (1968) Correlation between lactate levels and pH in discs of patients with lumbar rhizopathies. Experientia 24: 1195–1196

    Article  PubMed  CAS  Google Scholar 

  11. Errington RJ, Puustjarvi K, White IR, Roberts S, Urban JP (1998) Characterisation of cytoplasm-filled processes in cells of the intervertebral disc. J Anat 192 (Pt 3): 369–378

    Article  PubMed  Google Scholar 

  12. Esumi H, Izuishi K, Kato K, Hashimoto K, Kurashima Y, Kishimoto A, Ogura T, Ozawa T (2002) Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5’-AMP-activated protein kinase-dependent manner. J Biol Chem 277: 32791–32798

    Article  PubMed  CAS  Google Scholar 

  13. Grimshaw MJ, Mason RM (2000) Bovine articular chondrocyte function in vitro depends upon oxygen tension. Osteoarthritis Cartilage 8: 386–392

    Article  PubMed  CAS  Google Scholar 

  14. Grimshaw MJ, Mason RM (2001) Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthritis Cartilage 9: 357–364

    Article  PubMed  CAS  Google Scholar 

  15. Hansen U, Schunke M, Domm C, Ioannidis N, Hassenpflug J, Gehrke T, Kurz B (2001) Combination of reduced oxygen tension and intermittent hydrostatic pressure: a useful tool in articular cartilage tissue engineering. J Biomech 34: 941–949

    Article  PubMed  CAS  Google Scholar 

  16. Hassler O (1970) The human intervertebral disc. A micro-angiographical study of its vascular supply at various ages. Acta Orthop Scand 40: 765–772

    Google Scholar 

  17. Holm S, Nachemson A (1983) Cellularity in the intervertebral disc and its relevance to nutrition. Proceedings of the International Society for the Study of the Lumbar Spine

  18. Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8: 101–119

    Article  PubMed  CAS  Google Scholar 

  19. Horner HA, Urban JP (2001) 2001 Volvo Award winner in basic science studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26: 2543–2549

    Article  PubMed  CAS  Google Scholar 

  20. Horner HA, Roberts S, Bielby RC, Menage J, Evans H, Urban J P (2002) Cells from different regions of the intervertebral disc: effect of culture system on matrix expression and cell phenotype. Spine 27: 1018–1028

    Article  PubMed  Google Scholar 

  21. Ishihara H, Urban JP (1999) Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res 17: 829–835

    Article  PubMed  CAS  Google Scholar 

  22. Ishihara H, Warensjo K, Roberts S, Urban JP (1997) Proteoglycan synthesis in the intervertebral disk nucleus: the role of extracellular osmolality. Am J Physiol 272: C1499-C1506

    PubMed  CAS  Google Scholar 

  23. Kauppila LI, Penttila A, Karhunen PJ, Lalu K, Hannikainen P (1994) Lumbar disc degeneration and atherosclerosis of the abdominal aorta. Spine 19: 923–929

    PubMed  CAS  Google Scholar 

  24. Lee RB, Urban JP (1997) Evidence for a negative Pasteur effect in articular cartilage. Biochem J 321: 95–102

    PubMed  CAS  Google Scholar 

  25. Lee RB, Urban JP (2002) Functional replacement of oxygen by other oxidants in articular cartilage. Arthritis Rheum 46: 3190–3200

    Article  PubMed  CAS  Google Scholar 

  26. Lee RB, Wilkins RJ, Razaq S, Urban JP (2002) The effect of mechanical stress on cartilage energy metabolism. Biorheology 39: 133–143

    PubMed  CAS  Google Scholar 

  27. Maldonado BA, Oegema-TR J (1992) Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J Orthop Res 10: 677–690

    Article  PubMed  CAS  Google Scholar 

  28. McFadden KD, Taylor JR (1989) End-plate lesions of the lumbar spine. Spine 14: 867–869

    Article  PubMed  CAS  Google Scholar 

  29. Nachemson A, Lewin T, Maroudas A, Freeman MAF (1970) In vitro diffusion of dye through the end-plates and annulus fibrosus of human lumbar intervertebral discs. Acta Orthop Scand 41: 589–607

    Article  PubMed  CAS  Google Scholar 

  30. Ohshima H, Urban JPG (1992) Effect of lactate concentrations and pH on matrix synthesis rates in the intervertebral disc. Spine 17: 1079–1082

    Article  PubMed  CAS  Google Scholar 

  31. Razaq S, Wilkins RJ, Urban JPG (2003) The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus. Europ Spine J 12: 341–349

    Article  Google Scholar 

  32. Roberts S, Menage J, Eisenstein SM (1993) The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Orthop Res 11: 747–757

    Article  PubMed  CAS  Google Scholar 

  33. Roberts S, Urban JPG, Evans H, Eisenstein SM (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21: 415–420

    Article  PubMed  CAS  Google Scholar 

  34. Selard E, Shirazi-Adl AS, Urban JPG (2003) Computational studies of nutrient transport in human intervertebral disc. Spine (in press)

  35. Stairmand J, Holm S, Urban J (1991) Factors influencing oxygen concentration gradients in the intervertebral disc: a theoretical analysis. Spine 16: 444–449

    Article  PubMed  CAS  Google Scholar 

  36. Urban JP, Holm S, Maroudas A, Nachemson A (1977) Nutrition of the intervertebral disk. An in vivo study of solute transport. Clin Orthop 101–114

  37. Urban MR, Fairbank JC, Etherington PJ, Loh FL, Winlove CP, Urban JP (2001) Electrochemical measurement of transport into scoliotic intervertebral discs in vivo using nitrous oxide as a tracer. Spine 26: 984–990

    Article  PubMed  CAS  Google Scholar 

  38. Ysart GE, Mason RM (1994) Responses of articular cartilage expiant cultures to different oxygen tensions. Biochim Biophys Acta 1221: 15–20

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. G. Urban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bibby, S.R.S., Urban, J.P.G. Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur Spine J 13, 695–701 (2004). https://doi.org/10.1007/s00586-003-0616-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-003-0616-x

Keywords

Navigation