Skip to main content
Log in

Pullout strength of anterior spinal instrumentation: a product comparison of seven screws in calf vertebral bodies

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

A lot of new implant devices for spine surgery are coming onto the market, in which vertebral screws play a fundamental role. The new screws developed for surgery of spine deformities have to be compared to established systems. A biomechanical in vitro study was designed to assess the bone–screw interface fixation strength of seven different screws used for correction of scoliosis in spine surgery. The objectives of the current study were twofold: (1) to evaluate the initial strength at the bone–screw interface of newly developed vertebral screws (Universal Spine System II) compared to established systems (product comparison) and (2) to evaluate the influence of screw design, screw diameter, screw length and bone mineral density on pullout strength. Fifty-six calf vertebral bodies were instrumented with seven different screws (USS II anterior 8.0 mm, USS II posterior 6.2 mm, KASS 6.25 mm, USS II anterior 6.2 mm, USS II posterior 5.2 mm, USS 6.0 mm, USS 5.0 mm). Bone mineral density (BMD) was determined by quantitative computed tomography (QCT). Failure in axial pullout was tested using a displacement-controlled universal test machine. USS II anterior 8.0 mm showed higher pullout strength than all other screws. The difference constituted a tendency (P = 0.108) when compared to USS II posterior 6.2 mm (+19%) and was significant in comparison to the other screws (+30 to +55%, P < 0.002). USS II posterior 6.2 mm showed significantly higher pullout strength than USS 5.0 mm (+30%, P = 0.014). The other screws did not differ significantly in pullout strength. Pullout strength correlated significantly with BMD (P = 0.0015) and vertebral body width/screw length (P < 0.001). The newly developed screws for spine surgery (USS II) show higher pullout strength when compared to established systems. Screw design had no significant influence on pullout force in vertebral body screws, but outer diameter of the screw, screw length and BMD are good predictors of pullout resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alobaid A, Arlet V, Busato A et al (2005) Pull-out strength of the suprapedicle claw construct: a biomechanical study. Eur Spine J 14:759–764

    Article  PubMed  Google Scholar 

  2. Bai B, Kummer FJ, Spivak J (2001) Augmentation of anterior vertebral body screw fixation by an injectable, biodegradable calcium phosphate bone substitute. Spine 26:2679–2683

    Article  PubMed  CAS  Google Scholar 

  3. Breeze SW, Doherty BJ, Noble PS et al (1998) A biomechanical study of anterior thoracolumbar screw fixation. Spine 23:1829–1831

    Article  PubMed  CAS  Google Scholar 

  4. Brantley AGU, Mayfield JK, Koenemann JB et al (1994) The effects of pedicle screw fit: an in vitro study. Spine 19:1752–1758

    Article  PubMed  CAS  Google Scholar 

  5. Cotterill PC, Kostuik JP, D`Angelo G et al (1986) An anatomical comparison of the human and bovine thorakolumbar spine. J Orthopaedic Res 4:298–303

    Article  CAS  Google Scholar 

  6. Dwyer AF, Newton NC, Sherwood AA (1969) An anterior approach to scoliosis: a preliminary report. Clin Orthop 62:191–202

    Google Scholar 

  7. Eysel P, Schwitalle M, Oberstein A et al (1998) Preoperative estimation of screw fixation strength in vertebral bodies. Spine 23:174–180

    Article  PubMed  CAS  Google Scholar 

  8. Farcy JP, Weidenbaum M, Michelsen CB et al (1987) A comparative biomechanical study of spinal fixation using Cotrel-Dubousset instrumentation. Spine 12:877–881

    Article  PubMed  CAS  Google Scholar 

  9. Ferguson SJ, Winkler F, Nolte LP (2002) Anterior fixation in the osteoporotic spine: cut-out and pullout characteristics of implants. Eur Spine J 11:527–534

    Article  PubMed  Google Scholar 

  10. Frandsen PA, Christofferson H, Madsen T (1984) Holding Power of different screws in the femoral head. Acta Othop 55:349–351

    CAS  Google Scholar 

  11. Gaines RW, Carson WL, Satterlee CC et al (1991) Experimental evaluation of seven different spinal fracture internal fixation devices using nonfailure stability testing. Spine 16:902–909

    Article  PubMed  Google Scholar 

  12. Gilbert SG, Johns PC, Chow DC et al (1993) Relation of vertebral bone screw axial pullout strength to quantitative computed tomographic trabecular bone mineral content. J Spinal Disord 6:513–521

    PubMed  CAS  Google Scholar 

  13. Gurr KR, McAfee PC, Shih CM (1988) Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy: an unstable calf-spine model. J Bone Joint Surg Am 70:680–691

    PubMed  CAS  Google Scholar 

  14. Gurwitz GS, Dawson JM, McNamara MJ et al (1993) Biomechanical analysis of three surgical approaches for lumbar burst fractures using short-segment instrumentation. Spine 18:977–982

    Article  PubMed  CAS  Google Scholar 

  15. Hackenberg L, Clahsen H, Halm H (1998) Influencing factors on the holding-power of spine surgery screws—experimental examninations. Z Orthop Ihre Grenzgeb 136:451–456

    PubMed  CAS  Google Scholar 

  16. Halvorson TL, Kelley LA, Thomas KA et al (1994) Effects of bone mineral density on pedicle screw fixation. Spine 19:2415–2420

    Article  PubMed  CAS  Google Scholar 

  17. Hopf C, Eysel P, Dubousset J (1995) CDH—first report on a new primary stable anterior spine instrumentation. Z Orthop Ihre Grenzgeb 133:274–281

    PubMed  CAS  Google Scholar 

  18. Horton WC, Blackstock SF, Norman JT et al (1996) Strength of fixation of anterior vertebral body screws. Spine 21:439–444

    Article  PubMed  CAS  Google Scholar 

  19. Hughes AN, Jordan BA (1972) The mechanical properties of surgical bone screws and some aspects of insertions practice. Injury 4:25–37

    Article  PubMed  CAS  Google Scholar 

  20. Jordan BA, Hughes AN (1978) A review of the factors affecting design, specification and material selection of screws for use in orthopedic surgery. Eng Med 7:114–123

    Google Scholar 

  21. Kaneda K, Shono Y, Satoh S et al (1996) New anterior instrumentation for the management of thoracolumbar and lumbar scoliosis: application of the Kaneda two-rod system. Spine 21:1250–1262

    Article  PubMed  CAS  Google Scholar 

  22. Korovessis PG, Deligianni D, Stamakis M et al (1998) Augmentation of anterior transvertebral screws using threaded teflon anchoring. J Spinal Disord 11:300–306

    PubMed  CAS  Google Scholar 

  23. Kumano K, Hirabayasi S, Ogawa Y et al (1994) Pedicle screws and bone mineral density. Spine 19:1157–1161

    Article  PubMed  CAS  Google Scholar 

  24. Liebermann IH, Khazim R. Woodside T (1998) Anterior vertebral body screw pullout testing. A comparison of Zielke, Kaneda, Universal Spine System, and Universal Spine System with pullout-resistant nut. Spine 23:908–910

    Article  Google Scholar 

  25. Lim TH, An HS, Evanich C et al (1995) Strength of anterior vertebral screw fixation in relationship to bone mineral density. J Spinal Disord 8:121–125

    Article  PubMed  CAS  Google Scholar 

  26. Lim TH, An HS, Hong JH et al (1997) Biomechanical Evaluation of anterior and posterior fixations in an unstable calf spine model. Spine 22:261–266

    Article  PubMed  CAS  Google Scholar 

  27. Lin LC, Chen HH, Sun SP (2003) A biomechanical study of the cortex anchorage vertebral screw. Clin Biomech 18:25–32

    Article  Google Scholar 

  28. Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8:79–86

    Article  PubMed  CAS  Google Scholar 

  29. Nunamaker DM, Perren SM (1976) Force measurement in screw fixation. J Biomech 9:669–675

    Article  Google Scholar 

  30. Ogon M, Haid C, Krismer M et al (1996) Comparison between single-screw and triangulated, double-screw fixation in anterior spine surgery. Spine 21:2728–2734

    Article  PubMed  CAS  Google Scholar 

  31. Okuyama K, Sato K, Abe E et al (1993) Stability of transpedicle screwing for the osteoporotic spine. Spine 18:2240–2245

    Article  PubMed  CAS  Google Scholar 

  32. Pfeiffer M, Gilbertson LG, Goel VK et al (1996) Effect of specimen fixation method on pullout tests of pedicle screws. Spine 21:1037–1044

    Article  PubMed  CAS  Google Scholar 

  33. Pitzen T, Barbier D, Tintinger F et al (2002) Screw fixation to the posterior cortical shell does not influence peak torque and pullout in anterior cervical plating. Eur Spine J 11:494–499

    Article  PubMed  CAS  Google Scholar 

  34. Pitzen T Franta F, Barbier D et al (2004) Insertion torque and pullout force of rescue screws for anterior cervical plate fixation in a fatigued initial pilot hole. J Neurosurg Spine 1:198–201

    Google Scholar 

  35. Pitzen T, Drumm J, Bruchmann B et al (2006) Effectiveness of cemented rescue screws for anterior cervical plate fixation. J Neurosurg Spine 4:60–63

    PubMed  Google Scholar 

  36. Rassi-Neto A, Shimano A (2002) Biomechanical properties of expander compared with conventional screws. J Neurosurg Spine 3 97:346–349

    Google Scholar 

  37. Reinhold M, Schwieger K, Goldhahn J et al (2006) Influence of screw positioning in a new anterior spine fixator on implant loosening in osteoporotic vertebrae. Spine 31:406–413

    Article  PubMed  Google Scholar 

  38. Riley LH, Eck JC, Yoshida H et al (2004) A biomechanical comparison of calf versus cadaver lumbar spine models. Spine 29:E217–E220

    Article  PubMed  Google Scholar 

  39. Schatzker J, Sanderson R, Murnaghan JP (1975) The holding power of orthopedic screws in vivo. Clin Orthop 108:115–126

    Article  PubMed  Google Scholar 

  40. Schramm M, Rumbein S, Kraus H et al (2003) Anterior vertebral body screw pullout testing with the hollow modular anchorage system—a comparative in vitro study. Biomed Technik 48:356–361

    Article  CAS  Google Scholar 

  41. Schultheiss M, Wilke HJ, Claes L et al (2002) MACS-TL twin screw. Orthopäde 31:362–367

    Article  PubMed  CAS  Google Scholar 

  42. Schultheiss M, Wilke HJ, Claes L et al (2002) MACS-TL polyaxial screw XL. A new concept for increasing stability of ventral spondylodesis in the presence of dorsal injuries. Orthopäde 31:397–401

    Article  PubMed  CAS  Google Scholar 

  43. Sell P, Collins M, Dove J (1988) Pedicle screws: axial pull-out strength in lumbar spine. Spine 13:1075–1076

    Article  PubMed  CAS  Google Scholar 

  44. Shimamoto N, Kotani Y, Shono Y et al (2001) Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis: in vitro fatigue simulation. Spine 26:2701–2708

    Article  PubMed  CAS  Google Scholar 

  45. Shono Y, Kaneda K, Yamamoto I (1991) A biomechanical analysis of Zielke, Kaneda, and Cotrel-Dubousset instrumentations in thoracolumbar scoliosis: a calf spine model. Spine 16:1305–1311

    Article  PubMed  CAS  Google Scholar 

  46. Skinner R, Maybee J, Transfeld E et al (1990) Experimental pullout testing and comparison of variables in transpedicular screw fixation. A biomechanical study. Spine 15:195–201

    Article  PubMed  CAS  Google Scholar 

  47. Snyder BD, Zaltz I, Hall JE et al (1993) Predicting the integrity of vertebral bone screw fixation in anterior spinal instrumentation. Spine 18:423–426

    Google Scholar 

  48. Soshi S, Shiba R, Kondo H et al (1991) An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine 16:1335–1341

    Article  PubMed  CAS  Google Scholar 

  49. Swartz DE, Wittenberg RH, Shea M et al (1991) Physical and mechanical properties of calf lumbosacral trabecular bone. J Biomech 24:1059–1068

    Article  PubMed  CAS  Google Scholar 

  50. Teschner W, Manitz V, Holzweißig E et al (1983) Anchoring experiments on human cadaver vertebrae using various types of screws. Z Orthop Ihre Grenzgeb 157:206–208

    Article  Google Scholar 

  51. Turi M, Johnston CE II, Richards BS (1993) Anterior correction of idiopathic scoliosis using TSRH instrumentation. Spine 18:417–422

    Article  PubMed  CAS  Google Scholar 

  52. Vangness CT, Carter RD, Frankel VH (1981) In vitro evaluation of the loosening characteristics of self-tapped and non-self-tapped cortical bone screws. Clin Orthop 157:279–286

    Google Scholar 

  53. Wilke HJ, Krischak ST Claes LE (1996) Biomechanical comparison of calf and human spines. J Orthop Res 14:500–503

    Article  PubMed  CAS  Google Scholar 

  54. Wilke HK, Krischak ST, Wenger KH et al (1997) Load-displacement properties of the thoracolumbar calf spine: experimental results and comparison to known human data. Eur Spine J 6:129–137

    Article  PubMed  CAS  Google Scholar 

  55. Wittenberg RH, Shea M, Edwards WT et al (1992) A biomechanical study of the fatigue characteristics of thoracolumbar fixation implants in a calf spine model. Spine 17:121–128

    Article  Google Scholar 

  56. Yamagata M, Kithahara H, Minami S et al (1992) Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine 17(suppl):51–54

    Article  Google Scholar 

  57. Zdeblick TA, Warden KE, Zou D et al (1993) Anterior spinal fixators: a biomechanical in vitro study. Spine 18:513–517

    PubMed  CAS  Google Scholar 

  58. Zielke K, Stunkat R, Beaujean F (1976) Ventrale derotationsspondylodese. Arch Orthop Unfallchir 85:257–277

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Synthes, Umkirch, Germany for their support in the performance of the study and providing their screws for the experiments. Study and investigation were conducted at the AO Research Institute, Clavadelerstrasse, 7270 Davos, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Seller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seller, K., Wahl, D., Wild, A. et al. Pullout strength of anterior spinal instrumentation: a product comparison of seven screws in calf vertebral bodies. Eur Spine J 16, 1047–1054 (2007). https://doi.org/10.1007/s00586-007-0307-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-007-0307-0

Keywords

Navigation