Skip to main content

Advertisement

Log in

Are animal models useful for studying human disc disorders/degeneration?

  • Review
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Intervertebral disc (IVD) degeneration is an often investigated pathophysiological condition because of its implication in causing low back pain. As human material for such studies is difficult to obtain because of ethical and government regulatory restriction, animal tissue, organs and in vivo models have often been used for this purpose. However, there are many differences in cell population, tissue composition, disc and spine anatomy, development, physiology and mechanical properties, between animal species and human. Both naturally occurring and induced degenerative changes may differ significantly from those seen in humans. This paper reviews the many animal models developed for the study of IVD degeneration aetiopathogenesis and treatments thereof. In particular, the limitations and relevance of these models to the human condition are examined, and some general consensus guidelines are presented. Although animal models are invaluable to increase our understanding of disc biology, because of the differences between species, care must be taken when used to study human disc degeneration and much more effort is needed to facilitate research on human disc material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161

    PubMed  Google Scholar 

  2. Aguiar DJ, Johnson SL, Oegema TR (1999) Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 246:129–137

    PubMed  CAS  Google Scholar 

  3. Anderson GD, Li X, Tannoury T, Beck G, Balian G (2003) A fibronectin fragment stimulates intervertebral disc degeneration in vivo. Spine 28:2338–2345

    Google Scholar 

  4. Ando T, Kato F, Mimatsu K, Iwata H (1995) Effects of chondroitinase ABC on degenerative intervertebral discs. Clin Orthop Relat Res 318:214–221

    Google Scholar 

  5. Ariga K, Miyamoto S, Nakase T, Okuda S, Meng WX, Yonenobu K, Yoshikawa H (2001) The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine 26:2414–2420

    PubMed  CAS  Google Scholar 

  6. Ariga K, Yonenobu K, Nakase T, Hosono N, Okuda S, Meng WX, Tamura Y, Yoshikawa H (2003) Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral discs—an ex vivo study. Spine 28:1528–1533

    PubMed  Google Scholar 

  7. Aszodi A, Chan D, Hunziker E, Bateman JF, Fassler R (1998) Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Cell Biol 143:1399–1412

    PubMed  CAS  Google Scholar 

  8. Bailey AS, Adler F, Min LS, Asher MA (2001) A comparison between bipedal and quadrupedal rats: do bipedal rats actually assume an upright posture? Spine 26:E308–E313

    PubMed  CAS  Google Scholar 

  9. Barry FP, Neame PJ, Sasse J, Pearson D (1994) Length variation in the keratan sulfate domain of mammalian aggrecan. Matrix Biol 14:323–328

    PubMed  CAS  Google Scholar 

  10. Battie MC, Videman T, Parent E (2004) Lumbar disc degeneration: epidemiology and genetic influences. Spine 29:2679–2690

    PubMed  Google Scholar 

  11. Bayliss MT, Johnstone B, O’Brien JP (1988) 1988 Volvo award in basic science. Proteoglycan synthesis in the human intervertebral disc. Variation with age, region and pathology. Spine 13:972–981

    PubMed  CAS  Google Scholar 

  12. Behrens A, Haigh J, Mechta-Grigoriou F, Nagy A, Yaniv M, Wagner EF (2003) Impaired intervertebral disc formation in the absence of Jun. Development 130:103–109

    PubMed  CAS  Google Scholar 

  13. Benneker LM, Heini PF, Alini M, Anderson SE, Ito K (2005) 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30:167–173

    PubMed  Google Scholar 

  14. Bernick S, Cailliet R (1982) Vertebral end-plate changes with aging of human vertebrae. Spine 7:97–102

    PubMed  CAS  Google Scholar 

  15. Berry RJ (1960) Genetical studies on the skeleton of the mouse 26. Pintail. Genet Res 1:439–451

    Article  Google Scholar 

  16. Boszczyk BM, Boszczyk AA, Putz R (2001) Comparative and functional anatomy of the mammalian lumbar spine. Anat Rec 264:157–168

    PubMed  CAS  Google Scholar 

  17. Braund KG (1974) Some aspects of structure and function of the canine intervertebral disc. Ph.D. thesis, University of Sydney

  18. Bruehlmann SB, Matyas JR, Duncan NA (2004) ISSLS prize winner: collagen fibril sliding governs cell mechanics in the anulus fibrosus: an in situ confocal microscopy study of bovine discs. Spine 29:2612–2620

    PubMed  Google Scholar 

  19. Bushell GR, Ghosh DP, Taylor TK, Sutherland JM, Braund KG (1978) The effect of spinal fusion on the collagen and proteoglycans of the canine intervertebral disc. J Surg Res 25:61–69

    PubMed  CAS  Google Scholar 

  20. Bushell GR, Ghosh P, Taylor TK, Sutherland JM (1979) The collagen of the intervertebral disc in adolescent idiopathic scoliosis. J Bone Joint Surg Br 61-B:501–508

    PubMed  CAS  Google Scholar 

  21. Butler WF (1988) Comparative anatomy and development of the mammalian disc. In: Ghosh P (eds) The biology of the intervertebral disc. CRC, Boca Raton, FL, pp 83–108

    Google Scholar 

  22. Cassidy JD, Yong-Hing K, Kirkaldy-Willis WH, Wilkinson AA (1988) A study of the effects of bipedism and upright posture on the lumbosacral spine and paravertebral muscles of the Wistar rat. Spine 13:301–308

    PubMed  CAS  Google Scholar 

  23. Cheung KM, Lu DS, Poon AM, Wang T, Luk KD, Leong JC (2003) Effect of melatonin suppression on scoliosis development in chickens by either constant light or surgical pinealectomy. Spine 28:1941–1944

    PubMed  Google Scholar 

  24. Cheung KM, Wang T, Poon AM, Carl A, Tranmer B, Hu Y, Luk KD, Leong JC (2005) The effect of pinealectomy on scoliosis development in young nonhuman primates. Spine 30:2009–2013

    PubMed  Google Scholar 

  25. Chiba K, Andersson GB, Masuda K, Momohara S, Williams JM, Thonar EJ (1998) A new culture system to study the metabolism of the intervertebral disc in vitro. Spine 23:1821–1827

    PubMed  CAS  Google Scholar 

  26. Ching CT, Chow DH, Yao FY, Holmes AD (2003) The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model. Clin Biomech 18:182–189

    Google Scholar 

  27. Ching CT, Chow DH, Yao FY, Holmes AD (2004) Changes in nuclear composition following cyclic compression of the intervertebral disc in an in vivo rat-tail model. Med Eng Phys 26:587–594

    PubMed  Google Scholar 

  28. Cole TC, Burkhardt D, Frost L, Ghosh P (1985) The proteoglycans of the canine intervertebral disc. Biochim Biophys Acta 839:127–138

    PubMed  CAS  Google Scholar 

  29. Cole TC, Burkhardt D, Ghosh P, Ryan M, Taylor T (1985) Effects of spinal fusion on the proteoglycans of the canine intervertebral disc. J Orthop Res 3:277–291

    PubMed  CAS  Google Scholar 

  30. Cole TC, Ghosh P, Hannan NJ, Taylor TK, Bellenger CR (1987) The response of the canine intervertebral disc to immobilization produced by spinal arthrodesis is dependent on constitutional factors. J Orthop Res 5:337–347

    PubMed  CAS  Google Scholar 

  31. Cole TC, Ghosh P, Taylor TK (1986) Variations of the proteoglycans of the canine intervertebral disc with ageing. Biochim Biophys Acta 880:209–219

    PubMed  CAS  Google Scholar 

  32. Court C, Colliou OK, Chin JR, Liebenberg E, Bradford DS, Lotz JC (2001) The effect of static in vivo bending on the murine intervertebral disc. Spine J 1:239–245

    PubMed  CAS  Google Scholar 

  33. Demers CN, Antoniou J, Mwale F (2004) Value and limitations of using the bovine tail as a model for the human lumbar spine. Spine 29:2793–2799

    PubMed  Google Scholar 

  34. Elliott DM, Sarver JJ (2004) Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc. Spine 29:713–722

    PubMed  Google Scholar 

  35. Fazzalari NL, Costi JJ, Hearn TC, Fraser RD, Vernon-Roberts B, Hutchinson J, Manthey BA, Parkinson IH, Sinclair C (2001) Mechanical and pathologic consequences of induced concentric anular tears in an ovine model. Spine 26:2575–2581

    PubMed  CAS  Google Scholar 

  36. Flannery CR, Little CB, Caterson B (1998) Molecular cloning and sequence analysis of the aggrecan interglobular domain from porcine, equine, bovine and ovine cartilage: comparison of proteinase-susceptible regions and sites of keratan sulfate substitution. Matrix Biol 16:507–511

    PubMed  CAS  Google Scholar 

  37. Foster MR, Allen MJ, Schoonmaker JE, Yuan HA, Kanazawa A, Park SA, Liu B (2002) Characterization of a developing lumbar arthrodesis in a sheep model with quantitative instability. Spine J 2:244–250

    PubMed  Google Scholar 

  38. Furuya S, Ohtsuki T, Yabe Y, Hosoda Y (2000) Ultrastructural study on calcification of cartilage: comparing ICR and twy mice. J Bone Miner Metab 18:140–147

    PubMed  CAS  Google Scholar 

  39. Gantenbein B, Grünhagen T, Lee CR, van Donkelaar CC, Alini M, Ito K (2006) An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs. Spine 31:2665–2673

    PubMed  Google Scholar 

  40. Ghosh P, Bushell GR, Taylor TK, Pearce RH, Grimmer BJ (1980) Distribution of glycosaminoglycans across the normal and the scoliotic disc. Spine 5:310–317

    PubMed  CAS  Google Scholar 

  41. Ghosh P, Melrose J, Cole TC, Taylor T (1992) A comparison of the high buoyant density proteoglycans isolated from the intervertebral discs of chondrodystrophoid and non-chondrodystrophoid dogs. Matrix 12:148–155

    PubMed  CAS  Google Scholar 

  42. Ghosh P, Taylor TK, Braund KG (1977) The variation of the glycosaminoglycans of the canine intervertebral disc with ageing. I. Chondrodystrophoid breed. Gerontology 23:87–98

    PubMed  CAS  Google Scholar 

  43. Ghosh P, Taylor TK, Braund KG (1977) Variation of the glycosaminoglycans of the intervertebral disc with ageing. II. Non-chondrodystrophoid breed. Gerontology 23:99–109

    PubMed  CAS  Google Scholar 

  44. Ghosh P, Taylor TK, Braund KG, Larsen LH (1976) The collagenous and non-collagenous protein of the canine intervertebral disc and their variation with age, spinal level and breed. Gerontology 22:124–134

    PubMed  CAS  Google Scholar 

  45. Gillett NA, Gerlach R, Cassidy JJ, Brown SA (1988) Age-related changes in the beagle spine. Acta Orthop Scand 59:503–507

    Article  PubMed  CAS  Google Scholar 

  46. Glant TT, Mikecz K, Arzoumanian A, Poole AR (1987) Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum 30:201–212

    PubMed  CAS  Google Scholar 

  47. Hadjipavlou AG, Simmons JW, Yang JP, Bi LX, Ansari GA, Kaphalia BS, Simmons DJ, Nicodemus CL, Necessary JT, Lane R, Esch O (1998) Torsional injury resulting in disc degeneration: I. An in vivo rabbit model. J Spinal Disord 11:312–317

    PubMed  CAS  Google Scholar 

  48. Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD (1990) Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell 63:1099–1112

    PubMed  CAS  Google Scholar 

  49. Hamrick MW, Pennington C, Byron CD (2003) Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin). J Orthop Res 21:1025–1032

    PubMed  CAS  Google Scholar 

  50. Higuchi M, Abe K, Kaneda K (1983) Changes in the nucleus pulposus of the intervertebral disc in bipedal mice. A light and electron microscopic study. Clin Orthop Relat Res 175:251–257

    PubMed  Google Scholar 

  51. Holm S, Holm AK, Ekström L, Karladani A, Hansson T (2004) Experimental disc degeneration due to endplate injury. J Spinal Disord Tech 17:64–71

    PubMed  Google Scholar 

  52. Horner HA, Roberts S, Bielby RC, Menage J, Evans H, Urban JPG (2002) Cells from different regions of the intervertebral disc—effect of culture system on matrix expression and cell phenotype. Spine 27:1018–1028

    PubMed  Google Scholar 

  53. Horner HA, Urban JPG (2001) 2001 Volvo award winner in basic science studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26:2543–2549

    PubMed  CAS  Google Scholar 

  54. Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677

    PubMed  CAS  Google Scholar 

  55. Hunter CJ, Matyas JR, Duncan NA (2004) Cytomorphology of notochordal and chondrocytic cells from the nucleus pulposus: a species comparison. J Anat 205:357–362

    PubMed  Google Scholar 

  56. Hutton WC, Murakami H, Li A, Elmer WA, Yoon ST, Minamide A, Akamaru T, Tomita K (2004) The effect of blocking a nutritional pathway to the intervertebral disc in the dog model. J Spinal Disord Tech 17:53–63

    PubMed  Google Scholar 

  57. Iatridis JC, MacLean JJ, Roughley PJ, Alini M (2006) Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Joint Surg Am 88(Suppl 2):41–46

    PubMed  Google Scholar 

  58. Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24:996–1002

    PubMed  CAS  Google Scholar 

  59. Johnson WEB, Menage J, Evans H, Gaguilo B, Roberts S, Eisenstein SM (2004) Serum-deprivation is associated with decreased cellularity and a loss of proteoglycan in organ cultures of bovine intervertebral discs. In: Proceedings of the 30th annual meeting, 5-5-1930, Porto, p 223

  60. Kaapa E, Han X, Holm S, Peltonen J, Takala T, Vanharanta H (1995) Collagen synthesis and types I, III, IV, and VI collagens in an animal model of disc degeneration. Spine 20:59–66

    Article  PubMed  CAS  Google Scholar 

  61. Kaapa E, Holm S, Han X, Takala T, Kovanen V, Vanharanta H (1994) Collagens in the injured porcine intervertebral disc. J Orthop Res 12:93–102

    PubMed  CAS  Google Scholar 

  62. Kaigle AM, Holm SH, Hansson TH (1995) Experimental instability in the lumbar spine. Spine 20:421–430

    PubMed  CAS  Google Scholar 

  63. Kaigle AM, Holm SH, Hansson TH (1997) 1997 Volvo Award winner in biomechanical studies. Kinematic behavior of the porcine lumbar spine: a chronic lesion model. Spine 22:2796–2806

    PubMed  CAS  Google Scholar 

  64. Kanemura T, Kawakami N, Deguchi M, Mimatsu K, Iwata H (1997) Natural course of experimental scoliosis in pinealectomized chickens. Spine 22:1563–1567

    PubMed  CAS  Google Scholar 

  65. Key JA, Ford LT (1948) Experimental intervertebral disc lesions. J Bone Joint Surg Am 30A:621

    PubMed  CAS  Google Scholar 

  66. Kim KS, Yoon ST, Li J, Park JS, Hutton WC (2005) Disc degeneration in the rabbit: a biochemical and radiological comparison between four disc injury models. Spine 30:33–37

    PubMed  Google Scholar 

  67. Kim KW, Ha KY, Park JB, Woo YK, Chung HN, An HS (2005) Expressions of membrane-type I matrix metalloproteinase, Ki-67 protein, and type II collagen by chondrocytes migrating from cartilage endplate into nucleus pulposus in rat intervertebral discs: a cartilage endplate-fracture model using an intervertebral disc organ culture. Spine 30:1373–1378

    PubMed  Google Scholar 

  68. Kim KW, Lim TH, Kim JG, Jeong ST, Masuda K, An HS (2003) The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine 28:982–990

    PubMed  Google Scholar 

  69. Kimura T, Nakata K, Tsumaki N, Miyamoto S, Matsui Y, Ebara S, Ochi T (1996) Progressive degeneration of articular cartilage and intervertebral discs. An experimental study in transgenic mice bearing a type IX collagen mutation. Int Orthop 20:177–181

    PubMed  Google Scholar 

  70. Kluba T, Niemeyer T, Gaissmaier C, Grunder T (2005) Human anulus fibrosis and nucleus pulposus cells of the intervertebral disc: effect of degeneration and culture system on cell phenotype. Spine 30:2743–2748

    PubMed  Google Scholar 

  71. Krebs J, Ferguson SJ, Goss BG, Aebli N (2006) Degenerative changes of intervertebral discs after vertebroplasty. In: Proceedings of the 33rd annual meeting of the international society for the study of the lumbar spine, Bergen, p 31

  72. Kroeber M, Unglaub F, Guehring T, Nerlich A, Hadi T, Lotz J, Carstens C (2005) Effects of controlled dynamic disc distraction on degenerated intervertebral discs: an in vivo study on the rabbit lumbar spine model. Spine 30:181–187

    PubMed  Google Scholar 

  73. Kroeber MW, Unglaub F, Wang HL, Schmid C, Thomsen M, Nerlich A, Richter W (2002) New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine 27:2684–2690

    PubMed  Google Scholar 

  74. Latorre A, Albareda J, Castiella T, Lasierra JM, Seral F (1998) Experimental model of multidirectional disc hernia in rats. Int Orthop 22:44–48

    PubMed  CAS  Google Scholar 

  75. Lauerman WC, Platenberg RC, Cain JE, Deeney VF (1992) Age-related disk degeneration: preliminary report of a naturally occurring baboon model. J Spinal Disord 5:170–174

    PubMed  CAS  Google Scholar 

  76. Lee CR, Grad S, MacLean JJ, Iatridis JC, Alini M (2005) Effect of mechanical loading on mRNA levels of common endogenous controls in articular chondrocytes and intervertebral disk. Anal Biochem 341:372–375

    PubMed  CAS  Google Scholar 

  77. Lee CR, Iatridis JC, Poveda L, Alini M (2006) In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine 31:515–522

    PubMed  Google Scholar 

  78. Lindblom K (1957) Intervertebral-disc degeneration considered as a pressure atrophy. J Bone Joint Surg Am 39-A:933–945

    PubMed  CAS  Google Scholar 

  79. Lipson SJ, Muir H (1980) Vertebral osteophyte formation in experimental disc degeneration. Morphologic and proteoglycan changes over time. Arthritis Rheum 23:319–324

    PubMed  CAS  Google Scholar 

  80. Lipson SJ, Muir H (1981) 1980 Volvo award in basic science. Proteoglycans in experimental intervertebral disc degeneration. Spine 6:194–210

    PubMed  CAS  Google Scholar 

  81. Lotz JC (2004) Animal models of intervertebral disc degeneration: lessons learned. Spine 29:2742–2750

    PubMed  Google Scholar 

  82. Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) 1998 Volvo Award winner in biomechanical studies—compression- induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 23:2493–2506

    PubMed  CAS  Google Scholar 

  83. Lundin O, Ekstrom L, Hellstrom M, Holm S, Sward L (1998) Injuries in the adolescent porcine spine exposed to mechanical compression. Spine 23:2574–2579

    PubMed  CAS  Google Scholar 

  84. Lundin O, Ekstrom L, Hellstrom M, Holm S, Sward L (2000) Exposure of the porcine spine to mechanical compression: differences in injury pattern between adolescents and adults. Eur Spine J 9:466–471

    PubMed  CAS  Google Scholar 

  85. Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J (1993) An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine 18:1609–1615

    PubMed  CAS  Google Scholar 

  86. Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Joint Surg Br 77:134–138

    PubMed  CAS  Google Scholar 

  87. Machida M, Murai I, Miyashita Y, Dubousset J, Yamada T, Kimura J (1999) Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine 24:1985–1989

    PubMed  CAS  Google Scholar 

  88. Machida M, Saito M, Dubousset J, Yamada T, Kimura J, Shibasaki K (2005) Pathological mechanism of idiopathic scoliosis: experimental scoliosis in pinealectomized rats. Eur Spine J 14:843–848

    PubMed  Google Scholar 

  89. Maeda S, Kokubun S (2000) Changes with age in proteoglycan synthesis in cells cultured in vitro from the inner and outer rabbit annulus fibrosus. Responses to interleukin-1 and interleukin-1 receptor antagonist protein. Spine 25:166–169

    PubMed  CAS  Google Scholar 

  90. Maldonado BA, Oegema TR Jr (1992) Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J Orthop Res 10:677–690

    PubMed  CAS  Google Scholar 

  91. Mason RM, Palfrey AJ (1984) Intervertebral disc degeneration in adult mice with hereditary kyphoscoliosis. J Orthop Res 2:333–338

    PubMed  CAS  Google Scholar 

  92. Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, Andersson GB, An HS (2005) A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30:5–14

    PubMed  Google Scholar 

  93. Melrose J, Ghosh P, Taylor TK, Hall A, Osti OL, Vernon-Roberts B, Fraser RD (1992) A longitudinal study of the matrix changes induced in the intervertebral disc by surgical damage to the annulus fibrosus. J Orthop Res 10:665–676

    PubMed  CAS  Google Scholar 

  94. Melrose J, Ghosh P, Taylor TK, Latham J, Moore R (1997) Topographical variation in the catabolism of aggrecan in an ovine annular lesion model of experimental disc degeneration. J Spinal Disord 10:55–67

    PubMed  CAS  Google Scholar 

  95. Melrose J, Ghosh P, Taylor TK, McAuley L (1994) Variation in the composition of the ovine intervertebral disc with spinal level and in its constituent proteoglycans. Vet Comp Orthop Traumatol 7:70–76

    Google Scholar 

  96. Melrose J, Ghosh P, Taylor TK, Vernon-Roberts B, Latham J, Moore R (1997) Elevated synthesis of biglycan and decorin in an ovine annular lesion model of experimental disc degeneration. Eur Spine J 6:376–384

    PubMed  CAS  Google Scholar 

  97. Melrose J, Gurr KR, Cole TC, Darvodelsky A, Ghosh P, Taylor TK (1991) The influence of scoliosis and ageing on proteoglycan heterogeneity in the human intervertebral disc. J Orthop Res 9:68–77

    PubMed  CAS  Google Scholar 

  98. Melrose J, Hall A, Macpherson C, Bellenger CR, Ghosh P (1995) Evaluation of digestive proteinases from the Antarctic krill Euphasia superba as potential chemonucleolytic agents. In vitro and in vivo studies. Arch Orthop Trauma Surg 114:145–152

    PubMed  CAS  Google Scholar 

  99. Melrose J, Roberts S, Smith S, Menage J, Ghosh P (2002) Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine 27:1278–1285

    PubMed  Google Scholar 

  100. Melrose J, Smith S, Little CB, Kitson J, Hwa SY, Ghosh P (2002) Spatial and temporal localization of transforming growth factor-beta, fibroblast growth factor-2, and osteonectin, and identification of cells expressing alpha-smooth muscle actin in the injured anulus fibrosus: implications for extracellular matrix repair. Spine 27:1756–1764

    PubMed  Google Scholar 

  101. Melrose J, Taylor TK, Ghosh P (1996) Variation in intervertebral disc serine proteinase inhibitory proteins with ageing in a chondrodystrophoid (beagle) and a non-chondrodystrophoid (greyhound) canine breed. Gerontology 42:322–329

    Article  PubMed  CAS  Google Scholar 

  102. Melrose J, Taylor TK, Ghosh P (1997) The serine proteinase inhibitory proteins of the chondrodystrophoid (beagle) and non-chondrodystrophoid (greyhound) canine intervertebral disc. Electrophoresis 18:1059–1063

    PubMed  CAS  Google Scholar 

  103. Melrose J, Taylor TK, Ghosh P, Holbert C, Macpherson C, Bellenger CR (1996) Intervertebral disc reconstitution after chemonucleolysis with chymopapain is dependent on dosage. Spine 21:9–17

    PubMed  CAS  Google Scholar 

  104. Mente PL, Aronsson DD, Stokes IAF, Iatridis JC (1999) Mechanical modulation of growth for the correction of vertebral wedge deformities. J Orthop Res 17:518–524

    PubMed  CAS  Google Scholar 

  105. Mikecz K, Glant TT, Poole AR (1987) Immunity to cartilage proteoglycans in BALB/c mice with progressive polyarthritis and ankylosing spondylitis induced by injection of human cartilage proteoglycan. Arthritis Rheum 30:306–318

    PubMed  CAS  Google Scholar 

  106. Moore RJ, Crotti TN, Osti OL, Fraser RD, Vernon-Roberts B (1999) Osteoarthrosis of the facet joints resulting from anular rim lesions in sheep lumbar discs. Spine 24:519–525

    PubMed  CAS  Google Scholar 

  107. Moore RJ, Osti OL, Vernon-Roberts B, Fraser RD (1992) Changes in endplate vascularity after an outer anulus tear in the sheep. Spine 17:874–878

    PubMed  CAS  Google Scholar 

  108. Moore RJ, Vernon-Roberts B, Osti OL, Fraser RD (1996) Remodeling of vertebral bone after outer anular injury in sheep. Spine 21:936–940

    PubMed  CAS  Google Scholar 

  109. Moskowitz RW, Ziv I, Denko CW, Boja B, Jones PK, Adler JH (1990) Spondylosis in sand rats: a model of intervertebral disc degeneration and hyperostosis. J Orthop Res 8:401–411

    PubMed  CAS  Google Scholar 

  110. Neufeld JH, Machado T, Margolin L (1991) Variables affecting disc size in the lumbar spine of rabbits: anesthesia, paralysis, and disc injury. J Orthop Res 9:104–112

    PubMed  CAS  Google Scholar 

  111. Norcross JP, Lester GE, Weinhold P, Dahners LE (2003) An in vivo model of degenerative disc disease. J Orthop Res 21:183–188

    PubMed  CAS  Google Scholar 

  112. O’Kelly C, Wang X, Raso J, Moreau M, Mahood J, Zhao J, Bagnall K (1999) The production of scoliosis after pinealectomy in young chickens, rats, and hamsters. Spine 24:35–43

    PubMed  CAS  Google Scholar 

  113. Oegema TR, Johnson SL, Aguiar DJ, Ogilvie JW (2000) Fibronectin and its fragments increase with degeneration in the human intervertebral disc. Spine 25:2742–2747

    PubMed  Google Scholar 

  114. Olsewski JM, Schendel MJ, Wallace LJ, Ogilvie JW, Gundry CR (1996) Magnetic resonance imaging and biological changes in injured intervertebral discs under normal and increased mechanical demands. Spine 21:1945–1951

    PubMed  CAS  Google Scholar 

  115. Oshima H, Ishihara H, Urban JP, Tsuji H (1993) The use of coccygeal discs to study intervertebral disc metabolism. J Orthop Res 11:332–338

    PubMed  CAS  Google Scholar 

  116. Osterman K, Osterman H (1996) Experimental lumbar spondylolisthesis in growing rabbits. Clin Orthop Relat Res 332:274–280

    PubMed  Google Scholar 

  117. Osti OL, Vernon-Roberts B, Fraser RD (1990) 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine 15:762–767

    PubMed  CAS  Google Scholar 

  118. Park C, Kim YJ, Lee CS, An K, Shin HJ, Lee CH, Kim CH, Shin JW (2005) An in vitro animal study of the biomechanical responses of anulus fibrosus with aging. Spine 30:E259–E265

    PubMed  Google Scholar 

  119. Pedrini-Mille A, Weinstein JN, Found EM, Chung CB, Goel VK (1990) Stimulation of dorsal root ganglia and degradation of rabbit annulus fibrosus. Spine 15:1252–1256

    PubMed  CAS  Google Scholar 

  120. Peng BG, Hou SX, Shi Q, Jia LS (2001) The relationship between cartilage end-plate calcification and disc degeneration: an experimental study. Chin Med J 114:308–312

    PubMed  CAS  Google Scholar 

  121. Pezowicz CA, Robertson PA, Broom ND (2005) Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state. J Anat 207:299–312

    PubMed  Google Scholar 

  122. Phillips FM, Reuben J, Wetzel FT (2002) Intervertebral disc degeneration adjacent to a lumbar fusion—an experimental rabbit model. J Bone Joint Surg Br 84B:289–294

    Google Scholar 

  123. Puustjarvi K, Lammi M, Helminen H, Inkinen R, Tammi M (1994) Proteoglycans in the intervertebral disc of young dogs following strenuous running exercise. Connect Tissue Res 30:225–240

    PubMed  CAS  Google Scholar 

  124. Puustjarvi K, Lammi M, Kiviranta I, Helminen HJ, Tammi M (1993) Proteoglycan synthesis in canine intervertebral discs after long-distance running training. J Orthop Res 11:738–746

    PubMed  CAS  Google Scholar 

  125. Rannou F, Poiraudeau S, Foltz V, Boiteux M, Corvol M, Revel M (2000) Monolayer anulus fibrosus cell cultures in a mechanically active environment: local culture condition adaptations and cell phenotype study. J Lab Clin Med 136:412–421

    PubMed  CAS  Google Scholar 

  126. Roberts S, Menage J, Eisenstein SM (1993) The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Orthop Res 11:747–757

    PubMed  CAS  Google Scholar 

  127. Saamanen AM, Puustjarvi K, Ilves K, Lammi M, Kiviranta I, Jurvelin J, Helminen HJ, Tammi M (1993) Effect of running exercise on proteoglycans and collagen content in the intervertebral disc of young dogs. Int J Sports Med 14:48–51

    PubMed  CAS  Google Scholar 

  128. Sahlman J, Inkinen R, Hirvonen T, Lammi MJ, Lammi PE, Nieminen J, Lapvetelainen T, Prockop DJ, Arita M, Li SW, Hyttinen MM, Helminen HJ, Puustjarvi K (2001) Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type II collagen. Spine 26:2558–2565

    PubMed  CAS  Google Scholar 

  129. Sambrook PN, MacGregor AJ, Spector TD (1999) Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum 42:366–372

    PubMed  CAS  Google Scholar 

  130. Sarver JJ, Elliott DM (2005) Mechanical differences between lumbar and tail discs in the mouse. J Orthop Res 23:150–155

    PubMed  Google Scholar 

  131. Shi S, Ciurli C, Cartman A, Pidoux I, Poole AR, Zhang Y (2003) Experimental immunity to the G1 domain of the proteoglycan versican induces spondylitis and sacroiliitis, of a kind seen in human spondylarthropathies. Arthritis Rheum 48:2903–2915

    PubMed  CAS  Google Scholar 

  132. Smith JW, Walmsley R (1951) Experimental incision of the intervertebral disc. J Bone Joint Surg Br 33-B:612–625

    PubMed  CAS  Google Scholar 

  133. Sobajima S, Kompel JF, Kim JS, Wallach CJ, Robertson DD, Vogt MT, Kang JD, Gilbertson LG (2005) A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology. Spine 30:15–24

    PubMed  Google Scholar 

  134. Stevens JW, Kurriger GL, Carter AS, Maynard JA (2000) CD44 expression in the developing and growing rat intervertebral disc. Dev Dyn 219:381–390

    PubMed  CAS  Google Scholar 

  135. Stokes IA, Aronsson DD, Spence H, Iatridis JC (1998) Mechanical modulation of intervertebral disc thickness in growing rat tails. J Spinal Disord 11:261–265

    PubMed  CAS  Google Scholar 

  136. Stokes IA, Counts DF, Frymoyer JW (1989) Experimental instability in the rabbit lumbar spine. Spine 14:68–72

    PubMed  CAS  Google Scholar 

  137. Stokes IA, Iatridis JC (2004) Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine 29:2724–2732

    PubMed  Google Scholar 

  138. Suguro T, Oegema TR Jr, Bradford DS (1986) Ultrastructural study of the short-term effects of chymopapain on the intervertebral disc. J Orthop Res 4:281–287

    PubMed  CAS  Google Scholar 

  139. Sweet HO, Green MC (1981) Progressive ankylosis, a new skeletal mutation in the mouse. J Hered 72:87–93

    PubMed  CAS  Google Scholar 

  140. Takaishi H, Nemoto O, Shiota M, Kikuchi T, Yamada H, Yamagishi M, Yabe Y (1997) Type-II collagen gene expression is transiently upregulated in experimentally induced degeneration of rabbit intervertebral disc. J Orthop Res 15:528–538

    PubMed  CAS  Google Scholar 

  141. Taurog JD, Maika SD, Satumtira N, Dorris ML, McLean IL, Yanagisawa H, Sayad A, Stagg AJ, Fox GM, Le O’Brien A, Rehman M, Zhou M, Weiner AL, Splawski JB, Richardson JA, Hammer RE (1999) Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev 169:209–223

    PubMed  CAS  Google Scholar 

  142. Taylor TK, Ghosh P, Braund KG, Sutherland JM, Sherwood AA (1976) The effect of spinal fusion on intervertebral disc composition: an experimental study. J Surg Res 21:91–104

    PubMed  CAS  Google Scholar 

  143. Taylor TK, Melrose J, Burkhardt D, Ghosh P, Claes LE, Kettler A, Wilke HJ (2000) Spinal biomechanics and aging are major determinants of the proteoglycan metabolism of intervertebral disc cells. Spine 25:3014–3020

    PubMed  CAS  Google Scholar 

  144. Thometz JG, Liu XC, Lyon R (2000) Three-dimensional rotations of the thoracic spine after distraction with and without rib resection: a kinematic evaluation of the apical vertebra in rabbits with induced scoliosis. J Spinal Disord 13:108–112

    PubMed  CAS  Google Scholar 

  145. Thompson RE, Pearcy MJ, Barker TM (2004) The mechanical effects of intervertebral disc lesions. Clin Biomech 19:448–455

    Google Scholar 

  146. Turgut M, Basaloglu HK, Yenisey C, Ozsunar Y (2006) Surgical pinealectomy accelerates intervertebral disc degeneration process in chicken. Eur Spine J 15:605–612

    PubMed  Google Scholar 

  147. Urayama S (1986) Histological and ultrastructural study of degeneration of the lumbar intervertebral disc in the rabbit following nucleotomy, with special reference to the topographical distribution pattern of the degeneration. Nippon Seikeigeka Gakkai Zasshi 60:649–662

    PubMed  CAS  Google Scholar 

  148. van der Werf MJ, Lezuo P, Maissen O, Ito K (2006) Decreased diffusion as a result of perfusion block in the ovine lumbar spine: a future model for disc degeneration. In: Proceedings of the 52nd annual meeting of the orthopaedic research society, Chicago, IL, p 31

  149. Walsh AJL, Lotz JC (2004) Biological response of the intervertebral disc to dynamic loading. J Biomech 37:329–337

    PubMed  Google Scholar 

  150. Wang JY, Baer AE, Kraus VB, Setton LA (2001) Intervertebral disc cells exhibit differences in gene expression in alginate and monolayer culture. Spine 26:1747–1751

    PubMed  CAS  Google Scholar 

  151. Wang X, Jiang H, Raso J, Moreau M, Mahood J, Zhao J, Bagnall K (1997) Characterization of the scoliosis that develops after pinealectomy in the chicken and comparison with adolescent idiopathic scoliosis in humans. Spine 22:2626–2635

    PubMed  CAS  Google Scholar 

  152. Watanabe H, Nakata K, Kimata K, Nakanishi I, Yamada Y (1997) Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan. Proc Natl Acad Sci USA 94:6943–6947

    PubMed  CAS  Google Scholar 

  153. Watanabe H, Yamada Y (2002) Chondrodysplasia of gene knockout mice for aggrecan and link protein. Glycoconj J 19:269–273

    PubMed  CAS  Google Scholar 

  154. Weinreich S, Hoebe B, Ivanyi P (1995) Maternal age influences risk for HLA-B27 associated ankylosing enthesopathy in transgenic mice. Ann Rheum Dis 54:754–756

    Article  PubMed  CAS  Google Scholar 

  155. Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22:2365–2374

    PubMed  CAS  Google Scholar 

  156. Wilke HJ, Kettler A, Gosh P, Claes L (1999) Is the lumbar sheep spine an adequate model for the human lumbar spine?—a comparison of biomechanical properties, macroscopic and microscopic anatomy and bone mineral density. In: Proceedings of the 26th annual meeting, Hawaii, p 124

  157. Wilke HJ, Kettler A, Wenger KH, Claes LE (1997) Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 247:542–555

    PubMed  CAS  Google Scholar 

  158. Wilke HJ, Krischak ST, Wenger KH, Claes LE (1997) Load-displacement properties of the thoracolumbar calf spine: experimental results and comparison to known human data. Eur Spine J 6:129–137

    PubMed  CAS  Google Scholar 

  159. Wilke HJ, Rohlmann A, Neller S, Graichen F, Claes L, Bergmann G (2003) ISSLS prize winner: a novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experiment and in vivo measurements. Spine 28:2585–2593

    PubMed  Google Scholar 

  160. White AA, Panjabi MM (1990) Clinical Biomechanics of the Spine. 2nd edn. JB Lippincott Company

  161. Yamada K, Tanabe S, Eueno H, Oinuma A, Ytakahashi T, Mityauchi S, Shigeno S, Hirose T, Miyahara K, Sato M (2001) Investigation of the short term effect of chemonucleolysis with chondroitinase ABC. J Vet Med Sci 63: 521–525

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Alini.

Additional information

All of the authors contributed equally to this publication and are listed simply in alphabetical order.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alini, M., Eisenstein, S.M., Ito, K. et al. Are animal models useful for studying human disc disorders/degeneration?. Eur Spine J 17, 2–19 (2008). https://doi.org/10.1007/s00586-007-0414-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-007-0414-y

Keywords

Navigation