Skip to main content

Advertisement

Log in

Allogenic versus autologous cancellous bone in lumbar segmental spondylodesis: a randomized prospective study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The current gold standard in lumbar fusion consists of transpedicular fixation in combination with an interbody interponate of autologous bone from iliac crest. Because of the limited availability of autologous bone as well as the still relevant donor site morbidity after iliac crest grafting the need exists for alternative grafts with a comparable outcome. Forty patients with degenerative spinal disease were treated with a monosegmental spondylodesis (ventrally, 1 PEEK-cage; dorsally, a screw and rod system), and randomly placed in two groups. In group 1, autogenous iliac crest cancellous bone was used as a cage filling. In group 2 the cages were filled with an allogenic cancellous bone graft. Following 3, 6, 9 and 12 months, the clinical outcome was determined on the basis of: the Oswestry Low Back Pain Disability Questionnaire; patient satisfaction; patient willingness to undergo the operation again; and a visual analog scale for pain. The radiological outcome was based on both fusion rate (radiographs, computed tomography), and on the bone mineral density of the grafts. After 6 months, the X-rays of the patients in group 2 had a significantly lower rate of fusion. Aside from this, there were no further significant differences. After 12 months, radiological results showed a similar fusion rate in both groups. Donor site complications consisted of five patients with hematoma, and three patients with persistent pain in group 1. No implant complications were observed. If a bone bank is available for support and accepting the low risk of possible transmission of infectious diseases, freeze–dried allogenic cancellous bone can be used for monosegmental spondylodeses. The results demonstrated an equivalent clinical outcome, as well as similar fusion rates following a 12-month period. This is in despite of a delayed consolidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res 300–309. doi:10.1097/00003086-199608000-00037

  2. Boden SD (2002) Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute. Spine 27:S26–S31. doi:10.1097/00007632-200208151-00007

    Article  PubMed  Google Scholar 

  3. Boden SD, Schimandle JH (1995) Biologic enhancement of spinal fusion. Spine 20:113S–123S. doi:10.1097/00007632-199512151-00007

    Article  PubMed  CAS  Google Scholar 

  4. Brantigan JW, McAfee PC, Cunningham BW, Wang H, Orbegoso CM (1994) Interbody lumbar fusion using a carbon fiber cage implant versus allograft bone An investigational study in the Spanish goat. Spine 19:1437–1444

    Google Scholar 

  5. Brantigan JW, Steffee AD (1993) A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine 18:2106–2107

    Article  PubMed  CAS  Google Scholar 

  6. Brantigan JW, Steffee AD, Geiger JM (1991) A carbon fiber implant to aid interbody lumbar fusion mechanical testing. Spine 16:S277–S282. doi:10.1097/00007632-199106001-00020

    Article  PubMed  CAS  Google Scholar 

  7. Brodsky AE, Kovalsky ES, Khalil MA (1991) Correlation of radiologic assessment of lumbar spine fusions with surgical exploration. Spine 16:S261–S265. doi:10.1097/00007632-199106001-00017

    Article  PubMed  CAS  Google Scholar 

  8. Buck BE, Malinin TI, Brown MD (1989) Bone transplantation and human immunodeficiency virus. An estimate of risk of acquired immunodeficiency syndrome (AIDS). Clin Orthop Relat Res 240:129–136

    PubMed  Google Scholar 

  9. Buttermann GR, Glazer PA, Bradford DS (1996) The use of bone allografts in the spine. Clin Orthop Relat Res 75–85. doi:10.1097/00003086-199603000-00010

  10. Dawson EG, Clader TJ, Bassett LW (1985) A comparison of different methods used to diagnose pseudarthrosis following posterior spinal fusion for scoliosis. J Bone Joint Surg Am 67:1153–1159

    PubMed  CAS  Google Scholar 

  11. Deyo RA, Nachemson A, Mirza SK (2004) Spinal-fusion surgery—the case for restraint. N Engl J Med 350:722–726. doi:10.1056/NEJMsb031771

    Article  PubMed  CAS  Google Scholar 

  12. Fairbank JC, Couper J, Davies JB, O’Brien JP (1980) The Oswestry Low Back Pain Disability Questionnaire. Physiotherapy 66:271–273

    PubMed  CAS  Google Scholar 

  13. Fernyhough JC, Schimandle JJ, Weigel MC, Edwards CC, Levine AM (1992) Chronic donor site pain complicating bone graft harvesting from the posterior iliac crest for spinal fusion. Spine 17:1474–1480

    Article  PubMed  CAS  Google Scholar 

  14. Gerbershagen HU, Lindena G, Korb J, Kramer S (2002) Health-related quality of life in patients with chronic pain. Schmerz 16:271–284. doi:10.1007/s00482-002-0164-z

    Article  PubMed  CAS  Google Scholar 

  15. Glassman S, Gornet MF, Branch C, Polly D Jr, Peloza J, Schwender JD, Carreon L (2006) MOS short form 37 and Oswestry Disability Index outcomes in lumbar fusion: a multicenter experience. Spine J 6:21–26. doi:10.1016/j.spinee.2005.09.004

    Article  PubMed  Google Scholar 

  16. Hahnel H, Muschik M, Zippel H, Gutsche H (1991) Lumbar segmental spondylodesis-isolated ventral or combined dorsoventral? A comparison of results. Z Orthop Ihre Grenzgeb 129:197–203

    Article  PubMed  CAS  Google Scholar 

  17. Hutter CG (1983) Posterior intervertebral body fusion. A 25-year study. Clin Orthop Relat Res 179:86–96

    Article  PubMed  Google Scholar 

  18. Janssen ME, Nguyen C, Beckham R, Larson A (2000) Biological cages. Eur Spine J 9(Suppl 1):S102–S109. doi:10.1007/PL00008315

    Article  PubMed  Google Scholar 

  19. Katz JN (1995) Lumbar spinal fusion Surgical rates, costs, and complications. Spine 20:78S–83S. doi:10.1097/00007632-199512151-00002

    Article  PubMed  CAS  Google Scholar 

  20. Kozak JA, Heilman AE, O’Brien JP (1994) Anterior lumbar fusion options. Technique and graft materials. Clin Orthop Relat Res 300:45–51

    PubMed  Google Scholar 

  21. Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80:351–359. doi:10.1302/0301-620X.80B2.7693

    Article  PubMed  CAS  Google Scholar 

  22. Malanin TI (1992) Bone Grafts and Bone Substitutes. In: Habal MB, Reddi AH (eds) Acquisition and banking of bone allografts. WB Saunders, Philadelphia

    Google Scholar 

  23. Marchesi DG (2000) Spinal fusions: bone and bone substitutes. Eur Spine J 9:372–378. doi:10.1007/s005860000203

    Article  PubMed  CAS  Google Scholar 

  24. McAfee PC, Boden SD, Brantigan JW, Fraser RD, Kuslich SD, Oxland TR, Panjabi MM, Ray CD, Zdeblick TA (2001) Symposium: a critical discrepancy-a criteria of successful arthrodesis following interbody spinal fusions. Spine 26:320–334. doi:10.1097/00007632-200102010-00020

    Article  PubMed  CAS  Google Scholar 

  25. Modic MT, Masaryk TJ, Ross JS, Carter JR (1988) Imaging of degenerative disk disease. Radiology 168:177–186

    PubMed  CAS  Google Scholar 

  26. Muschler G, Lane J, Dawson E (1990) The biology of spinal fusion. In: Cotler J, Cotler H (eds) Spinal fusion, science and technique. Springer, Heidelberg

    Google Scholar 

  27. Niemeyer T, Bovingloh AS, Halm H, Liljenqvist U (2004) Results after anterior-posterior lumbar spinal fusion: 2–5 years follow-up. Int Orthop 28:298–302. doi:10.1007/s00264-004-0577-7

    Article  PubMed  Google Scholar 

  28. Pavlov PW, Meijers H, van Limbeek J, Jacobs WC, Lemmens JA, Obradov-Rajic M, de Kleuver M (2004) Good outcome and restoration of lordosis after anterior lumbar interbody fusion with additional posterior fixation. Spine 29:1893–1899. doi:10.1097/01.brs.0000137067.68630.70 (discussion 1900)

    Article  PubMed  Google Scholar 

  29. Pelker RR, Friedlaender GE (1987) Biomechanical aspects of bone autografts and allografts. Orthop Clin North Am 18:235–239

    PubMed  CAS  Google Scholar 

  30. Pruss A, Baumann B, Seibold M, Kao M, Tintelnot K, von Versen R, Radtke H, Dörner T, Pauli G, Göbel UB (2001) Validation of the sterilization procedure of allogeneic avital bone transplants using peracetic acid-ethanol. Biologicals 29:59–66. doi:10.1006/biol.2001.0286

    Article  PubMed  CAS  Google Scholar 

  31. Putzier M, Funk JF, Schneider SV, Gross C, Tohtz SW, Khodadadyan-Klostermann C, Perka C, Kandziora F (2006) Charite total disc replacement–clinical and radiographical results after an average follow-up of 17 years. Eur Spine J 15:183–195. doi:10.1007/s00586-005-1022-3

    Article  PubMed  Google Scholar 

  32. Ray CD (1997) Threaded titanium cages for lumbar interbody fusions. Spine 22:667–679. doi:10.1097/00007632-199703150-00019 (discussion 679-680)

    Article  PubMed  CAS  Google Scholar 

  33. Santos ER, Goss DG, Morcom RK, Fraser RD (2003) Radiologic assessment of interbody fusion using carbon fiber cages. Spine 28:997–1001. doi:10.1097/00007632-200305150-00007

    Article  PubMed  Google Scholar 

  34. Simmons JW (1985) Posterior lumbar interbody fusion with posterior elements as chip grafts. Clin Orthop Relat Res 193:85–89

    PubMed  Google Scholar 

  35. Videbaek TS, Christensen FB, Soegaard R, Hansen ES, Hoy K, Helmig P, Niedermann B, Eiskjoer SP, Bunger CE (2006) Circumferential fusion improves outcome in comparison with instrumented posterolateral fusion: long-term results of a randomized clinical trial. Spine 31:2875–2880. doi:10.1097/01.brs.0000247793.99827.b7

    Article  PubMed  Google Scholar 

  36. Williams AL, Gornet MF, Burkus JK (2005) CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol 26:2057–2066

    PubMed  Google Scholar 

  37. Wimmer C, Krismer M, Gluch H, Ogon M, Stockl B (1999) Autogenic versus allogenic bone grafts in anterior lumbar interbody fusion. Clin Orthop Relat Res 122–126. doi:10.1097/00003086-199903000-00015

  38. Xue Q, Li H, Zou X, Bunger M, Egund N, Lind M, Christensen FB, Bunger C (2005) Healing properties of allograft from alendronate-treated animal in lumbar spine interbody cage fusion. Eur Spine J 14:222–226. doi:10.1007/s00586-004-0771-8

    Article  PubMed  Google Scholar 

  39. Zdeblick TA, Ducker TB (1991) The use of freeze–dried allograft bone for anterior cervical fusions. Spine 16:726–729. doi:10.1097/00007632-199107000-00006

    Article  PubMed  CAS  Google Scholar 

  40. Zelle B, Konig F, Enderle A, Bertagnoli R, Dorner J (2002) Circumferential fusion of the lumbar and lumbosacral spine using a carbon fiber ALIF cage implant versus autogenous bone graft: a comparative study. J Spinal Disord Tech 15:376–379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Putzier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putzier, M., Strube, P., Funk, J.F. et al. Allogenic versus autologous cancellous bone in lumbar segmental spondylodesis: a randomized prospective study. Eur Spine J 18, 687–695 (2009). https://doi.org/10.1007/s00586-008-0875-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0875-7

Keywords

Navigation