Skip to main content
Log in

Motor control of lumbar instability following exposure to various cyclic load magnitudes

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The motor control system may compensate for lumbar instability following cyclic work with differential response to load magnitude. In vivo felines were exposed to a cumulative 1 h of cyclic work at 0.25 Hz. One group exposed to light whereas the second to heavy load while recording lumbar displacement and multifidus EMG during work and in single test cycles over 7 h rest post-work. Significant laxity and reduced reflexive EMG activity were evident immediately post-work in both groups. EMG and laxity recovered over 7 h rest in the group exposed to light load whereas in the group exposed to heavy load, motor control compensation was triggered within 1–2 h post-work. The compensation was expressed by earlier and stronger muscular activation than in baseline. It is concluded that cyclic work is deleterious to spine stability immediately after work. Work with heavy loads elicits delayed motor control compensation whereas work with light loads leaves the spine unstable and exposed to injury for several hours. Overall, prolonged cyclic or repetitive work elicits a transient instability disorder, regardless of the load handled, exposing the individual to potential injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams M (2007) Spine stability: the six blind men and the elephant. Clin Biomech (Bristol, Avon) 22:486. doi:10.1016/j.clinbiomech.2007.01.001

    Article  Google Scholar 

  2. Azar N, Kallakuri S, Chen C, Cavanaugh J (2009) Strain and load thresholds for cervical muscle recruitment in response to quasi-static tensile loading of the caprine C5-C6 facet joint capsule. J Electromyogr Kinesiol (in press)

  3. Dickey J, McNorton S, Potvin J (2003) Repeated spinal flexion modulates the flexion-relaxation phenomenon. Clin Biomech (Bristol, Avon) 18:783–789. doi:10.1016/S0268-0033(03)00166-9

    Article  Google Scholar 

  4. Eversull E, Solomonow M, Zhou BH et al (2001) Neuromuscular neutral zones sensitivity to lumbar displacement rate. Clin Biomech (Bristol, Avon) 16:102–113. doi:10.1016/S0268-0033(00)00038-3

    Article  Google Scholar 

  5. Fisher A, Chang C (1985) Electromyographic evidence of paraspinal muscles spasms during sleep in patients with low back pain. Clin J Pain 1:147–154

    Google Scholar 

  6. Granata K, Marras W, Davis K (1999) Variation in spinal load and trunk dynamics during repeated lifting exertions. Clin Biomech (Bristol, Avon) 14:367–375. doi:10.1016/S0268-0033(99)00004-2

    Article  CAS  Google Scholar 

  7. Granata K, Marras W (2000) Cost-benefit of muscle co-contraction in protecting against spinal instability. Spine 25:1398–1404. doi:10.1097/00007632-200006010-00012

    Article  PubMed  CAS  Google Scholar 

  8. Granata KP, Rogers E, Moorhouse K (2005) Effects of static flexion-relaxation on paraspinal reflex behavior. Clin Biomech (Bristol, Avon) 20:16–24. doi:10.1016/j.clinbiomech.2004.09.001

    Article  Google Scholar 

  9. Haig A, Weisman G, Haugh L, Pope M, Grobler L (1993) Prospective evidence for change in paraspinal muscle activity after herniated nucleus pulposus. Spine 18:926–930. doi:10.1097/00007632-199306000-00020

    Article  PubMed  CAS  Google Scholar 

  10. Hoogendoorn WE, Bongers PM, de Vet HC et al (2000) Flexion and rotation of the trunk and lifting at work are risk factors for low back pain: results of a prospective cohort study. Spine 25:3087–3092. doi:10.1097/00007632-200012010-00018

    Article  PubMed  CAS  Google Scholar 

  11. Hoops H, Zhou B, Lu Y, Solomonow M, Patel V (2007) Short rest between cyclic flexion periods is a risk factor for lumbar disorder. Clin Biomech (Bristol, Avon) 22:745–757. doi:10.1016/j.clinbiomech.2007.03.010

    Article  Google Scholar 

  12. Hoyt W, Hunt H, DePauw M et al (1981) EMG assessment of chronic low back pain syndrome. J Am Osteopath Assoc 80:728–730

    PubMed  CAS  Google Scholar 

  13. Ianuzzi A, Pickar J, Khalsa P (2009) Determination of torque limits for human and CAT lumbar spine specimens during displacement controlled physiological methods. Spine J 9:77–86. doi:10.1016/j.spinee.2007.07.391

    Article  PubMed  Google Scholar 

  14. Indhal A, Kaigle A, Reikeras O, Holm S (1997) Interaction between porcine lumbar intervertebral disc, zygapophysial joints, and paraspinal muscles. Spine 22:2834–2840. doi:10.1097/00007632-199712150-00006

    Article  Google Scholar 

  15. Indhal A, Kaigle A, Reikeras O, Holm S (1995) EMG response of the porcine multifidus musculature after nerve stimulation. Spine 20:2652–2658

    Google Scholar 

  16. Karajcarski S, Wells R (2006) The time variation pattern of mechanical exposure and the reporting of low back pain. Theor Issues Ergonomic Sci:1–27

  17. Le P, Solomonow M, Zhou B, Lu Y, Patel V (2007) Cyclic load magnitude is a risk factor for accumulative low back disorder. J Occup Environ Med 49:375–387. doi:10.1097/JOM.0b013e318046eb0b

    Article  PubMed  Google Scholar 

  18. Le B, Davidson B, Solomonow D, Zhou B, Lu Y, Patel V, Solomonow M (2009) Lumbar instability following exposure to prolonged static loads of various magnitudes. Muscle Nerve 39:71–82. doi:10.1002/mus.21214

    Article  PubMed  Google Scholar 

  19. Leadbetter W (1990) An introduction to sports induced soft tissue inflammation. In: Leadbetter W, Buckwalter J, Gordon S (eds) Sports induced inflammation; clinical and basic science concepts, Am Acad Orthop Surg, Park Ridge, IL, USA

  20. Li L, Patel N, Solomonow D, Le P, Hoops H, Gerhardt D, Johnson K, Zhou B, Lu Y, Solomonow M (2007) Neuromuscular response to cyclic lumbar twisting. Hum Factors 49:820–829. doi:10.1518/001872007X230190

    Article  PubMed  Google Scholar 

  21. Little J, Khalsa P (2005) Human lumbar spine creep during cyclic and static flexion: creep rate, biomechanics, and facet joint capsule strain. Ann Biomed Eng 33:391–401. doi:10.1007/s10439-005-1742-x

    Article  PubMed  Google Scholar 

  22. Lu D, Solomonow M, Zhou B, Baratta R, Li L (2004) Frequency dependent changes in neuromuscular response to cyclic lumbar flexion. J Biomech 37:845–855. doi:10.1016/j.jbiomech.2003.11.023

    Article  PubMed  Google Scholar 

  23. Lu D, Le P, Davidson B, Zhou B, Lu Y, Patel V, Solomonow M (2008) High frequency cyclic flexion is a risk factor for a lumbar disorder. Muscle Nerve 38:867–874. doi:10.1002/mus.21019

    Article  PubMed  Google Scholar 

  24. Lucas D, Bresler B (1961) Stability of the Ligamentous Spine. Biomechanics Laboratory, UCSF/B. Report No. 40, 1-41

  25. MacIntosh J, Valencia F, Bogduk N, Munro R (1986) The morphology of the human lumbar Multifidus. Clin Biomech (Bristol, Avon) 1:196–204. doi:10.1016/0268-0033(86)90146-4

    Article  Google Scholar 

  26. Marras WS (2000) Occupational low back disorder causation and control. Ergonomics 43:880–902. doi:10.1080/001401300409080

    Article  PubMed  CAS  Google Scholar 

  27. McGill S, Kippers V (1994) Transfer of loads between lumbar tissues during the flexion-relaxation phenomenon. Spine 19:2190–2196

    Article  PubMed  CAS  Google Scholar 

  28. McGill S, Brown S (1992) Creep response of the lumbar spine to prolonged full flexion. Clin Biomech (Bristol, Avon) 17:43–46. doi:10.1016/0268-0033(92)90007-Q

    Article  Google Scholar 

  29. Miller D (1985) Comparison of EMG activity in the lumbar paraspinal muscles of subjects with and without chronic low back pain. Phys Ther 65:1347–1354

    PubMed  CAS  Google Scholar 

  30. Navar D, Zhou B, Lu Y, Solomonow M (2006) High repetition of cyclic loading is a risk factor for lumbar disorders. Muscle Nerve 34:614–622. doi:10.1002/mus.20629

    Article  PubMed  Google Scholar 

  31. Olson M, Li L, Solomonow M (2004) Flexion-relaxation response to cyclic lumbar flexion. Clin Biomech (Bristol, Avon) 19:769–776. doi:10.1016/j.clinbiomech.2004.05.007

    Article  Google Scholar 

  32. Olson M, Solomonow M, Li L (2006) Flexion-relaxation response to gravity. J Biomech 39:2545–2554. doi:10.1016/j.jbiomech.2005.09.009

    Article  PubMed  Google Scholar 

  33. Olson M, Li L, Solomonow M (2009) Interaction of viscoelastic tissue compliance with lumbar muscles during passive cyclic flexion-extension. J Electromyogr Kinesiol 19:30–38

    Article  PubMed  Google Scholar 

  34. Panjabi M, Goel V, Takata K (1982) Physiologic strains in the lumbar spinal ligaments. Spine 7:192–203. doi:10.1097/00007632-198205000-00003

    Article  PubMed  CAS  Google Scholar 

  35. Panjabi M (1992) The stabilizing system of the spine; 2: neutral zone and instability hypothesis. J Spinal Disord 5:390–397. doi:10.1097/00002517-199212000-00002

    Article  PubMed  CAS  Google Scholar 

  36. Panjabi M (1996) Low back pain and spinal stability. In: Weinstein JN, Gordon SL (eds) Low back pain: a scientific and clinical overview. American Academy of Orthopedic Surgeons, Rosemont, pp 367–384

    Google Scholar 

  37. Panjabi M (2003) Clinical spinal stability and low back pain. J Electromyogr Kinesiol 13:371–379. doi:10.1016/S1050-6411(03)00044-0

    Article  PubMed  Google Scholar 

  38. Pickar J (1999) An in vivo preparation for investigating neural responses to controlled loading of a lumbar vertebra in the anesthetized cat. J Neurosci Methods 89:87–96. doi:10.1016/S0165-0270(99)00060-6

    Article  PubMed  CAS  Google Scholar 

  39. Punnett L, Fine J, Keyserling M et al (1991) Back disorders and non neutral trunk postures of automobile assembly workers. Scand J Work Environ Health 17:337–346

    PubMed  CAS  Google Scholar 

  40. Punnett L, Wegeman D (2004) Work related musculoskeletal disorders: the epidemiologic evidence and the debate. J Electromyogr Kinesiol 14:13–23. doi:10.1016/j.jelekin.2003.09.015

    Article  PubMed  Google Scholar 

  41. Reeves NP, Narendra KS, Cholewicki J (2007) Spine stability: the six blind men and the elephant. Clin Biomech (Bristol, Avon) 22:266–274. doi:10.1016/j.clinbiomech.2007.01.002

    Article  Google Scholar 

  42. Shin G, Mirka G (2007) An in vivo assessment of the low back response to prolonged flexion: interplay between active and passive tissues. Clin Biomech (Bristol, Avon) 22:965–971. doi:10.1016/j.clinbiomech.2007.06.003

    Article  Google Scholar 

  43. Shivonen T, Partanen J, Hanninen O, Soimakallio S (1991) Electric behavior of low back muscles during lumbar pelvic rhythm in low back pain and healthy controls. Arch Phys Med Rehabil 72:1080–1087

    Google Scholar 

  44. Smit TH (2002) The use of quadruped as an in vivo model for the study of the spine–Biomechanical considerations. Eur Spine J 11:137–144. doi:10.1007/s005860100346

    Article  PubMed  Google Scholar 

  45. Solomonow M, Baten C, Smit J, Baratta RV, Hermens H, D’Ambrosia R, Shoji H (1990) EMG power spectra frequencies associated with motor unit recruitment strategies. J Appl Physiol 68:1177–1185

    PubMed  CAS  Google Scholar 

  46. Solomonow M, Zhou B, Harris M, Lu Y, Baratta R (1998) The ligamento-muscular stabilizing system of the spine. Spine 23:2552–2562. doi:10.1097/00007632-199812010-00010

    Article  PubMed  CAS  Google Scholar 

  47. Solomonow M, Zhou B, Baratta R, Lu Y, Harris M (1999) Biomechanics of increased exposure to lumbar injury due to cyclic loading: I. Loss of reflexive muscular stabilization. Spine 24:2426–2434. doi:10.1097/00007632-199912010-00003

    Article  PubMed  CAS  Google Scholar 

  48. Solomonow M, Zhou B, Baratta R, Lu Y, Zhu M, Harris M (2000) Bi-exponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading. Clin Biomech (Bristol, Avon) 15:167–175. doi:10.1016/S0268-0033(99)00062-5

    Article  CAS  Google Scholar 

  49. Solomonow M, Eversull E, He Zhou B et al (2001) Neuromuscular neutral zones associated with viscoelastic hysteresis during cyclic lumbar flexion. Spine 26:E314–E324. doi:10.1097/00007632-200107150-00013

    Article  PubMed  CAS  Google Scholar 

  50. Solomonow M, Baratta R, Zhou B, Burger E, Zieske A, Gedalia A (2003) Muscular dysfunction elicited by creep of lumbar viscoelastic tissues. J Electromyogr Kinesiol 13:381–396. doi:10.1016/S1050-6411(03)00045-2

    Article  PubMed  CAS  Google Scholar 

  51. Solomonow D, Davidson B, Zhou B, Lu Y, Patel V, Solomonow M (2008) Neuromuscular neutral zones response to cyclic lumbar flexion. J Biomech 41:2821–2828. doi:10.1016/j.jbiomech.2008.07.010

    Article  PubMed  Google Scholar 

  52. Stubbs M, Harris M, Solomonow M, Zhou B, Lu Y, Baratta R (1998) The ligamento-muscular protective reflex in the lumbar spine. J Electromyogr Kinesiol 8:197–204. doi:10.1016/S1050-6411(97)00012-6

    Article  PubMed  CAS  Google Scholar 

  53. van Dieen JH, Selen LP, Cholewicki J (2003) Trunk muscle activation in low-back pain patients, an analysis of the literature. J Electromyogr Kinesiol 13:333–351. doi:10.1016/S1050-6411(03)00041-5

    Article  PubMed  Google Scholar 

  54. Wilke HJ, Krischak S, Claes L (1996) Biomechanical comparison of calf and human spines. J Orthop Res 14:500–503. doi:10.1002/jor.1100140321

    Article  PubMed  CAS  Google Scholar 

  55. Wilke HJ, Kettler A, Claes L (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22:2365–2374. doi:10.1097/00007632-199710150-00009

    Article  PubMed  CAS  Google Scholar 

  56. Williams M, Solomonow M, Zhou B, Baratta R, Harris M (2000) Multifidus spasms elicited by prolonged lumbar flexion. Spine 25:1924–2916. doi:10.1097/00007632-200011150-00014

    Article  Google Scholar 

  57. Woo S, Gomez M, Amiel D, Akeson W (1981) The effect of exercise on the biomechanical and biochemical properties of swine digital flexor tendon. J Biomech Eng 103:51–56

    Article  PubMed  CAS  Google Scholar 

  58. Woo S, Gomez M, Woo Y, Akeson W (1982) Mechanical properties of tendons and ligaments: the relationships of exercise in tissue remodeling. Biorheology 19:379–408

    Google Scholar 

  59. Woo S, Apreleva M, Hoher J (1999) Tissue mechanics of ligaments and tendons. In: Kumar S (ed) Biomechanics in ergonomics. Taylor & Francis, London

    Google Scholar 

  60. Youssef J, Davidson B, Zhou B, Lu Y, Solomonow M, Patel V (2008) Neuromuscular neutral zones response to static lumbar flexion. Clin Biomech (Bristol, Avon) 23:870–880. doi:10.1016/j.clinbiomech.2008.03.069

    Article  Google Scholar 

  61. Zarrinkalam M, Beard H, Schultz C, Moore R (2009) Validation of the sheep as a large animal model for the study of vertebral osteoporosis. Eur Spine J (in press). doi:10.1007/s00586-008-0813-8

Download references

Acknowledgment

This work was supported by Grant R01-OH-007622 from the National Institute of Occupational Safety and Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Solomonow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Masaud, A., Solomonow, D., Davidson, B. et al. Motor control of lumbar instability following exposure to various cyclic load magnitudes. Eur Spine J 18, 1022–1034 (2009). https://doi.org/10.1007/s00586-009-0952-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-0952-6

Keywords

Navigation