Skip to main content
Log in

Pro-inflammatory cytokines expression increases following low- and high-magnitude cyclic loading of lumbar ligaments

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Repetitive or overuse disorders of the lumbar spine affect the lives of workers and athletes. We hypothesize that repetitive anterior lumbar flexion–extension under low or high load will result in significantly elevated pro-inflammatory cytokines expression several hours post-activity. High loads will exhibit significantly higher expression than low loads. Lumbar spine of in vivo feline was subjected to cyclic loading at 0.25 Hz for six 10-min periods with 10 min of rest in between. One group was subjected to a low peak load of 20 N, whereas the second group to a high peak load of 60 N. Following a 7-h post-loading rest, the supraspinous ligaments of L-3/4, L-4/5 and L-5/6 and the unstimulated T-10/11 were excised for mRNA analysis and IL-1β, IL-6, IL-8, TNFα and TGFβ1 pro-inflammatory cytokines expression. Creep (laxity) developed in the lumbar spine during the loading and the subsequent 7 h of rest was calculated. A two-way mixed model ANOVA was used to assess difference in each cytokines expression between the two groups and control. Tukey HSD post hoc analysis delineated specific significant effects. Significance was set at 0.05. Low and high-load groups exhibited development of creep throughout the cyclic loading period and gradual recovery throughout the 7-h rest period. Residual creep of 24.8 and 30.2% were present in the low and high-load groups, respectively, 7-h post-loading. Significant increases in expression of all cytokines measured relative to control were obtained for supraspinous ligaments from both low and high-load magnitudes. IL-6, IL-8 and TGFβ1 expression in the high-load group were significantly higher relative to the low-load group. Significant increases in cytokines expression indicating tissue inflammation are observed several hours post-repetitive lumbar flexion–extension regardless of the load magnitude applied. Repetitive occupational and athletic activity, regardless of the load applied, may be associated with the potential of developing acute inflammatory conditions that may convert to chronic inflammation if the viscoelastic tissues are further exposed to repetitive activity over long periods. Appropriate rest periods are a relevant preventive measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barbe M, Barr A, Gorzelany I et al (2003) Chronic repetitive reaching and grasping results in decreased motor performance and widespread tissue responses in rat model of MSD. J Orthop Res 21:167–176

    Article  CAS  PubMed  Google Scholar 

  2. Ben-Masaud A, Solomonow D, Davidson B, Zhou B, Lu Y, Patel V, Solomonow M (2009) Motor control of lumbar instability following exposure to various cyclic load magnitudes. Eur Spine J 18:1022–1034

    Article  PubMed  Google Scholar 

  3. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Routledge Academic press, London

  4. Crisco J, Chelikani S, Brown R, Wolfe S (1997) The effect of exercise on ligamentous stiffness in the wrist. J Hand Surg 22A:44–48

    Google Scholar 

  5. Dickey J, McNorton S, Potvin J (2003) Repeated spinal flexion modulates the flexion–relaxation phenomenon. Clin Biomech 18:783–789

    Article  Google Scholar 

  6. Duenwald S, Vanderby R, Lakes R (2009) Viscoelastic relaxation and recovery of tendons. Ann Biomed Eng 37:1131–1140

    Article  PubMed  Google Scholar 

  7. Fung D, Wang V, Laudier D, Shine J, Basta-Pljakic J, Jepesen K, Schaffler M, Flatow E (2009) Subrupture tendon fatigue damage. J Orthopedic Res 27:264–273

    Article  Google Scholar 

  8. Gauldie J, Sauder DN, McAdam KP, Dinarello CA (1987) Purified interleukin-1 (IL-1) from human monocytes stimulates acute-phase protein synthesis by rodent hepatocytes in vitro. Immunology 60(2):203–207

    CAS  PubMed  Google Scholar 

  9. Guerne PA, Zuraw BL, Vaughan JH, Carson DA, Lotz M (1989) Synovium as a source of interleukin 6 in vitro contribution to local and systemic manifestations of arthritis. J Clin Invest 83(2):585–592

    Article  CAS  PubMed  Google Scholar 

  10. Hoogendoorn WE, Bongers PM, de Vet HC et al (2000) Flexion and rotation of the trunk and lifting at work are risk factors for low back pain: results of a prospective cohort study. Spine 25:3087–3092

    Article  CAS  PubMed  Google Scholar 

  11. Hoops H, Zhou B, Lu Y, Solomonow M, Patel V (2007) Short rest between cyclic flexion periods is a risk factor for lumbar disorder. Clin Biomech 22:745–757

    Article  Google Scholar 

  12. King K, Davidson B, Zhou B, Lu Y, Patel V, Solomonow M (2009) High magnitude cyclic load triggers inflammatory response in lumbar ligaments. Clin Biomech 24:792–798

    Article  Google Scholar 

  13. Le P, Solomonow M, Zhou B, Lu Y, Patel V (2007) Cyclic load magnitude is a risk factor for cumulative low back disorder. J Occup Environ Med 49:375–387

    Article  PubMed  Google Scholar 

  14. Leadbetter W (1990) An introduction to sports induced soft tissue inflammation. In: Leadbetter W, Buckwalter J, Gordon S (eds) Sports induced inflammation; clinical and basic science concepts. Am. Acad. Orthopedic Surgeons, Park Ridge

    Google Scholar 

  15. Li L, Patel N, Solomonow D, Le P, Hoops H, Gerhardt D, Johnson K, Zhou B, Lu Y, Solomonow M (2007) Neuromuscular response to cyclic lumbar twisting. Hum Factors 49:820–829

    Article  PubMed  Google Scholar 

  16. Lipsky PE (2006) Interleukin-6 and rheumatic diseases. Arthritis Res Ther 8 (suppl 2):S4

    Google Scholar 

  17. Little J, Khalsa P (2005) Human lumbar spine creep during cyclic and static flexion: creep rate, biomechanics, and facet joint capsule strain. Ann Biomed Eng 33:391–401

    Article  PubMed  Google Scholar 

  18. Lu D, Solomonow M, Zhou B, Baratta R, Li L (2004) Frequency dependent changes in neuromuscular response to cyclic lumbar flexion. J Biomech 37:845–855

    Article  PubMed  Google Scholar 

  19. Lu D, Le P, Davidson B, Zhou B, Lu Y, Patel V, Solomonow M (2008) High frequency cyclic flexion is a risk factor for a lumbar disorder. Muscle Nerve 38:867–874

    Article  PubMed  Google Scholar 

  20. Marras WS (2000) Occupational low back disorder causation and control. Ergonomics 43:880–902

    Article  CAS  PubMed  Google Scholar 

  21. Massague J, Gomis RR (2006) The logic of TGF[beta] signaling. FEBS Lett 580(12):2811–2820

    Article  CAS  PubMed  Google Scholar 

  22. McGill S, Brown S (1992) Creep response of the lumbar spine to prolonged full flexion. Clin Biomech 17:43–46

    Article  Google Scholar 

  23. Namen A, Schmierer A, March C, Overell R, Park L, Urdal D, Mochizuki D (1988) B cell precursor growth-promoting activity purification and characterization of a growth factor active on lymphocyte precursors. J Exp Med 167(3):988–1002

    Article  CAS  PubMed  Google Scholar 

  24. Navar D, Zhou B, Lu Y, Solomonow M (2006) High repetition of cyclic loading is a risk factor for lumbar disorders. Muscle Nerve 34:614–622

    Article  PubMed  Google Scholar 

  25. Olson M, Li L, Solomonow M (2004) Flexion–relaxation response to cyclic lumbar flexion. Clin Biomech 19:769–776

    Article  Google Scholar 

  26. Olson M, Li L, Solomonow M (2009) Interaction of viscoelastic tissue compliance with lumbar muscles during passive cyclic flexion–extension. J Electromyogr Kinesiol 19:30–38

    Article  PubMed  Google Scholar 

  27. Orchard J, James T, Portus M, Kountouris, Dennis R (2009) Fast bowlers in cricket demonstrate up to 3–4 weeks delay between high workloads and increased risk of injury. Am J Sports Med 37:1186–1192

  28. Panjabi M, Courtney T (2001) High speed sub failure stretch of rabbit ACL: changes in elastic failure and viscoelastic characteristics. Clin Biomech 16:334–340

    Article  CAS  Google Scholar 

  29. Panjabi M, Goel V, Takata K (1982) Physiologic strains in the lumbar spinal ligaments. Spine 7:192–203

    Article  CAS  PubMed  Google Scholar 

  30. Punnett L, Wegeman D (2004) Work related musculoskeletal disorders; the epidemiologic evidence and the debate. J Electromyogr Kinesiol 14:13–23

    Article  PubMed  Google Scholar 

  31. Renstrom R, Arms S, Stanwyck T et al (1986) Strains within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med 14:83–87

    Article  CAS  PubMed  Google Scholar 

  32. Sbriccoli P, Solomonow M, Zhou B, Lu Y, Sellards R (2005) Neuromuscular response to cyclic loading of the anterior cruciate ligament. Am J Sports Med 33:543–551

    Article  PubMed  Google Scholar 

  33. Sbriccoli P, Solomonow M, Zhou B, Lu Y (2007) Work to rest duration ratios exceeding unity are a risk factor for low back disorder. J Electromyogr Kinesiol 17:142–152

    Article  PubMed  Google Scholar 

  34. Silverstein B, Fine L, Armstrong T (1986) Hand wrist cumulative trauma disorders in industry. Br J Ind Med 43:779–784

    CAS  PubMed  Google Scholar 

  35. Smith AJ, Humphries SE (2009) Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine Growth Factor Rev 20:43–59

    Article  CAS  PubMed  Google Scholar 

  36. Smoljanovic T, Bojnic I, Hannafin J, Hren D, Delimar D, Pecina M (2009) Traumatic and overuse injuries among international elite junior rowers. Am J Sports Med 37:1193–1199

    Article  PubMed  Google Scholar 

  37. Solomonow M, Zhou B, Baratta R, Lu Y, Zhu M, Harris M (2000) Bi-exponential recovery model of lumbar viscoelastic creep and reflexive muscular activity after prolonged cyclic loading. Clin Biomech 15:167–175

    Article  CAS  Google Scholar 

  38. Solomonow M, Zhou B, Baratta R, Lu Y, Harris M (1999) Biomechanics of increased exposure to lumbar injury due to cyclic loading: I loss of reflexive muscular stabilization. Spine 24:2426–2434

    Article  CAS  PubMed  Google Scholar 

  39. Solomonow M (2004) Ligaments: a source of work related musculoskeletal disorder. J Electromyogr Kinesiol 14:49–60

    Article  CAS  PubMed  Google Scholar 

  40. Solomonow M, Baratta R, Zhou B, Burger E, Zieske A, Gedalia A (2003) Muscular dysfunction elicited by creep of lumbar viscoelastic tissues. J Electromyogr Kinesiol 13:381–396

    Article  CAS  PubMed  Google Scholar 

  41. Solomonow D, Davidson B, Zhou B, Lu Y, Patel V, Solomonow M (2008) Neuromuscular neutral zones response to cyclic lumbar flexion. J Biomechan 41:2821–2828

    Article  Google Scholar 

  42. Solomonow M, Zhou B, Harris M, Lu Y, Baratta R (1998) The ligamento-muscular stabilizing system of the spine. Spine 23:2552–2562

    Article  CAS  PubMed  Google Scholar 

  43. Soslowsky L, Thomopoulos S, Tun S et al (2000) Overuse activity injures the supraspinatous tendon in an animal model: a histologic and biomechanical study. J Shoulder Elbow Surg 9:79–84

    Article  CAS  PubMed  Google Scholar 

  44. Tsuzaki M, Guyton G, Garrett W, Archambault JM, Herzog W, Almekinders L, Bynum D, Yang X, Banes AJ (2003) IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J Orthop Res 21(2):256–264

    Article  CAS  PubMed  Google Scholar 

  45. Van Damme J, Cayphas S, Opdenakker G, Billiau A, Van Snick J (1987) Interleukin 1 and poly(rI).poly(rC) induce production of a hybridoma growth factor by human fibroblasts. Eur J Immunol 17(1):1–7

    Google Scholar 

  46. Verburgh CA, Hart MH, Aarden LA, Swaak AJ (1993) Interleukin-8 (IL-8) in synovial fluid of rheumatoid and nonrheumatoid joint effusions. Clin Rheumatol 12(4):494–499

    Article  CAS  PubMed  Google Scholar 

  47. Wang X, Hamza M, Wu T, Dionne R (2009) Upregulation of IL-6, IL-8 and CCL2 gene expression after acute inflammation: correlation to clinical pain. Pain 142:275–283

    Article  CAS  PubMed  Google Scholar 

  48. Williams M, Solomonow M, Zhou B, Baratta V, Harris M (2000) Multifidus spasms elicited by prolonged lumbar flexion. Spine 25:2916–2924

    Article  CAS  PubMed  Google Scholar 

  49. Woo S, Gomez M, Woo Y, Akeson W (1982) Mechanical properties of tendons and ligaments: the relationships of exercise in tissue remodeling. Biorheology 19:379–408

    Google Scholar 

  50. Woo S, Gomez M, Amiel D, Akeson W (1981) The effect of exercise on the biomechanical and biochemical properties of swine digital flexor tendon. J Biomechan Eng 103:51–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant RO1-OH-07622 from NIOSH and by the Academic Enrichment Fund from the UC Denver, School of Medicine. Peter D’Ambrosia, MD was a research Orthopedic resident supported by the Department of Orthopedics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Solomonow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Ambrosia, P., King, K., Davidson, B. et al. Pro-inflammatory cytokines expression increases following low- and high-magnitude cyclic loading of lumbar ligaments. Eur Spine J 19, 1330–1339 (2010). https://doi.org/10.1007/s00586-010-1371-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1371-4

Keywords

Navigation