Skip to main content

Advertisement

Log in

Parameters that effect spine biomechanics following cervical disc replacement

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Total disc replacement (TDR) is expected to provide a more physiologic alternative to fusion. However, long-term clinical data proving the efficacy of the implants is lacking. Limited clinical data suggest somewhat of a disagreement between the in vitro biomechanical studies and in vivo assessments. This conceptual paper presents the potential biomechanical challenges affecting the TDR that should be addressed with a hope to improve the clinical outcomes and our understanding of the devices. Appropriate literature and our own research findings comparing the biomechanics of different disc designs are presented to highlight the need for additional investigations. The biomechanical effects of various surgical procedures are analyzed, reiterating the importance of parameters like preserving uncinate processes, disc placement and its orientation within the cervical spine. Moreover, the need for a 360° dynamic system for disc recipients who may experience whiplash injuries is explored. Probabilistic studies as performed already in the lumbar spine may explore high risk combinations of different parameters and explain the differences between “standard” biomechanical investigations and clinical studies. Development of a patient specific optimized finite element model that takes muscle forces into consideration may help resolve the discrepancies between biomechanics of TDR and the clinical studies. Factors affecting long-term performance such as bone remodeling, subsidence, and wear are elaborated. In vivo assessment of segmental spine motion has been, and continues to be, a challenge. In general, clinical studies while reporting the data have placed lesser emphasis on kinematics following intervertebral disc replacements. Evaluation of in vivo kinematics following TDR to analyze the quality and quantity of motion using stereoradiogrammetric technique may be needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morishita Y, Hida S, Miyazaki M, Hong SW, Zou J, Wei F, Naito M, Wang JC (2008) The effects of the degenerative changes in the functional spinal unit on the kinematics of the cervical spine. Spine J 33(6):E178–E182

    Article  Google Scholar 

  2. Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K (1993) Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine J 18(15):2167–2173

    Article  CAS  Google Scholar 

  3. Emery SE, Bohlman HH, Bolesta MJ, Jones PK (1998) Anterior cervical decompression and arthrodesis for the treatment of cervical spondylotic myelopathy. Two to seventeen-year follow-up. J Bone Joint Surg Am 80(7):941–951

    PubMed  CAS  Google Scholar 

  4. Gore DR, Gardner GM, Sepic SB, Murray MP (1986) Roentgenographic findings following anterior cervical fusion. Skeletal Radiol 15(7):556–559

    Article  PubMed  CAS  Google Scholar 

  5. Terai T, Faizan A, Sairyo K, Goel VK (2010) Operated and adjacent segment motions for fusion vs. cervical arthroplasty: a pilot study. In: Current concepts in cervical spine surgery (Drs. Alberto Di Martino & Vincenzo Denaro, Guest Editors). CORR. (Epub ahead of print). http://www.ncbi.nlm.nih.gov/pubmed/21053112

  6. Vaccaro AR, Falatyn SP, Scuderi GJ, Eismont FJ, McGuire RA, Singh K, Garfin SR (1998) Early failure of long segment anterior cervical plate fixation. J Spinal Disord 11(5):410–415

    Article  PubMed  CAS  Google Scholar 

  7. Wang JC, McDonough PW, Endow KK, Delamarter RB (2000) Increased fusion rates with cervical plating for two-level anterior cervical discectomy and fusion. Spine 25(1):41–45

    Article  PubMed  CAS  Google Scholar 

  8. Goel VK, Faizan A, Felon L, Biyani A, McGowan D, Wang ST (2006) Biomechanical aspects of the spine motion preservation systems. In: Innovations in spinal reconstruction: clinical examples of basic science, biomechanics, and engineering. Taylor and Francis, New York

    Google Scholar 

  9. Mummaneni PV, Robinson JC, Haid RW Jr (2007) Cervical arthroplasty with the PRESTIGE LP cervical disc. Neurosurgery 60(4 Suppl 2):310–314

    PubMed  Google Scholar 

  10. Nabhan A, Ahlhelm F, Shariat K, Pitzen T, Steimer O, Steudel WI, Pape D (2007) The ProDisc-C prosthesis: clinical and radiological experience 1 year after surgery. Spine 32(18):1935–1941

    Article  PubMed  Google Scholar 

  11. Amit A, Dorward N (2007) Bryan cervical disc prosthesis: 12-month clinical outcome. Br J Neurosurg 21(5):478–484

    Article  PubMed  CAS  Google Scholar 

  12. Anderson PA, Rouleau JP, Bryan VE, Carlson CS (2003) Wear analysis of the Bryan Cervical Disc prosthesis. Spine 28(20):S186–S194

    Article  PubMed  Google Scholar 

  13. Bartels RH, Donk R (2005) Fusion around cervical disc prosthesis: case report. Neurosurgery 57(1):194

    Article  Google Scholar 

  14. Bertagnoli R, Yue JJ, Pfeiffer F, Fenk-Mayer A, Lawrence JP, Kershaw T, Nanieva R (2005) Early results after ProDisc-C cervical disc replacement. J Neurosurg Spine 2(4):403–410

    Article  PubMed  Google Scholar 

  15. Chang UK, Kim DH, Lee MC, Willenberg R, Kim SH, Lim J (2007) Range of motion change after cervical arthroplasty with ProDisc-C and prestige artificial discs compared with anterior cervical discectomy and fusion. J Neurosurg Spine 7(1):40–46

    Article  PubMed  Google Scholar 

  16. Chi JH, Ames CP, Tay B (2005) General considerations for cervical arthroplasty with technique for ProDisc-C. Neurosurg Clin N Am 16(4):609–619

    Article  PubMed  Google Scholar 

  17. Coric D, Finger F, Boltes P (2006) Prospective randomized controlled study of the Bryan Cervical Disc: early clinical results from a single investigational site. J Neurosurg Spine 4(1):31–35

    Article  PubMed  Google Scholar 

  18. Gay E, Palombi O, Ashraf A, Chirossel JP (2004) The Bryan cervical disc prosthesis. Preliminary clinical experience with nine implants. Neurochirurgie 50(6):624–629

    Article  PubMed  CAS  Google Scholar 

  19. Kim SW, Shin JH, Arbatin JJ, Park MS, Chung YK, McAfee PC (2007) Effects of cervical disc prosthesis on maintaining sagittal alignment of the functional spinal unit and overall sagittal balance of the cervical spine. Eur Spine J 17(1):20–29

    Article  PubMed  Google Scholar 

  20. Malloy KM, Hilibrand AS (2002) Autograft versus allograft in degenerative cervical disease. Clin Orthop Relat Res 394:27–38

    Google Scholar 

  21. Robertson JT, Metcalf NH (2004) Long-term outcome after implantation of the Prestige l disc in an end-stage indication: 4-year results from a pilot study. Neurosurg Focus 17(3):10

    Article  Google Scholar 

  22. Rousseau MA, Cottin P, Levante S, Nogier A, Lazennec JY, Skalli W (2008) In vivo kinematics of two types of ball-and-socket cervical disc replacements in the sagittal plane: cranial versus caudal geometric center. Spine 33(1):E6–E9

    Article  PubMed  Google Scholar 

  23. Shim CS, Lee SH, Park HJ, Kang HS, Hwang JH (2006) Early clinical and radiologic outcomes of cervical arthroplasty with Bryan Cervical Disc prosthesis. J Spinal Disord Tech 19(7):465–470

    Article  PubMed  Google Scholar 

  24. Mummaneni PV, Burkus JK, Haid RW, Traynelis VC, Zdeblick TA (2007) Clinical and radiographic analysis of cervical disc arthroplasty compared with allograft fusion: a randomized controlled clinical trial. J Neurosurg Spine 6(3):198–209

    Article  PubMed  Google Scholar 

  25. Sasso RC, Smucker JD, Hacker RJ, Heller JG (2007) Artificial disc versus fusion: a prospective, randomized study with 2-year follow-up on 99 patients. Spine 32(26):2933–2940

    Article  PubMed  Google Scholar 

  26. Pimenta L, McAfee PC, Cappuccino A, Cunningham BW, Diaz R, Coutinho E (2007) Superiority of multilevel cervical arthroplasty outcomes versus single-level outcomes: 229 consecutive PCM prostheses. Spine 32(12):1337–1344

    Article  PubMed  Google Scholar 

  27. Siepe CJ, Mayer HM, Wiechert K, Korge A (2006) Clinical results of total lumbar disc replacement with ProDisc II: three-year results for different indications. Spine 31(17):1923–1932

    Article  PubMed  Google Scholar 

  28. Shim CS, Lee SH, Shin HD, Kang HS, Choi WC, Jung B, Choi G, Ahn Y, Lee S, Lee HY (2007) CHARITE versus ProDisc: a comparative study of a minimum 3-year follow-up. Spine 32(9):1012–1018

    Article  PubMed  Google Scholar 

  29. Beaurain J, Bernard P, Dufour T, Fuentes JM, Hovorka I, Huppert J, Steib JP, Vital JM, Aubourg L, Vila T (2009) Intermediate clinical and radiological results of cervical TDR (Mobi-C®) with up to 2 years of follow-up. Eur Spine J18:841–850

    Article  Google Scholar 

  30. Rousseau MA, Bonnet X, Skalli W (2008) Influence of the geometry of a ball-and-socket intervertebral prosthesis at the cervical spine a finite element study. Spine J 33(1):E10–E14

    Article  Google Scholar 

  31. Faizan A (2008) Investigation into cervical spine biomechanics following total disc replacement. Dissertation, University of Toledo, Toledo

  32. Faizan A, Goel VK, Bergeron B (2006) The anterior longitudinal ligament is essential to restore disc biomechanics following artificial disc replacement. 52nd Annual Meeting. Orthopedic Research Society, Chicago

    Google Scholar 

  33. Johnson PJ, Lauryssen C, Helen OC, Robert P, Regan J, Anand N, Robert B (2004) Sagittal alignment and the Bryan cervical artificial disc. Neurosurg Focus 17(6):E14

    Google Scholar 

  34. Seok WK, Jae HS, Jose JA, Moon SP, Yung KC, Paul CM (2008) Effects of a cervical disc prosthesis on maintaining sagittal alignment of the functional spinal unit and overall sagittal balance of the cervical spine. Eur Spine J 17:20–29

    Google Scholar 

  35. Kulkarni N, Goel VK, Kodigudla M, Ferrara L, Chikka A (2009) Effects of design variables on cervical spinal kinematics, neutral posture and quality of motion as demonstrated by four different artificial discs—a finite element analysis study. In: 55th annual meeting of the Orthopaedic Research Society, Las Vegas, NV

  36. Crawford NR, Arnett JD, Butters JA, Ferrara LA, Kulkarni N, Goel VK, Duggal N (2010) Biomechanics of a posture-controlling cervical artificial disc: mechanical, in vitro, and finite-element analysis. J Neurosurg Neurosurg Focus 28(6):11

    Article  Google Scholar 

  37. Aho A, Vartiainen O, Salo O (1955) Segmentary antero-posterior mobility of the cervical spine. Ann Med Intern Fenn 44(4):287–299

    PubMed  CAS  Google Scholar 

  38. Bhalla SK, Simmons EH (1969) Normal ranges of intervertebral-joint motion of the cervical spine. Can J Surg 12(2):181–187

    PubMed  CAS  Google Scholar 

  39. Dvorak J, Froehlich D, Penning L, Baumgartner H, Panjabi MM (1988) Functional radiographic diagnosis of the cervical spine: flexion/extension. Spine 13(7):748–755

    Article  PubMed  CAS  Google Scholar 

  40. Lind B, Sihlbom H, Nordwall A, Malchau H (1989) Normal range of motion of the cervical spine. Arch Phys Med Rehabil 70(9):692–695

    PubMed  CAS  Google Scholar 

  41. Charles R. Clark ECB, Bradford LC (eds) (2004) The cervical spine, 4th edn. Lippincott Williams & Wilkins, Philadelphia

  42. Puttlitz CM, Rousseau MA, Xu Z, Hu S, Tay BK, Lotz JC (2004) Intervertebral disc replacement maintains cervical spine kinetics. Spine 29(24):2809–2814

    Article  PubMed  Google Scholar 

  43. Faizan A, Goel VK, Kulkarni N, Biyani A, Garfin S, Bono C, Maguire P, Serhan H (2008) Biomechanical comparison following bilevel fusion, bilevel total disc replacement and fusion plus total disc replacement at adjacent levels in cervical spine. In: 54th annual meeting of the Orthopaedic Research Society, San Francisco, CA

  44. Faizan A, Goel VK, Garfin SR, Bono CM, Serhan H, Biyani A, Elgafy H, Krishna M, Friesem T (2009) Do design variations in the artificial disc influence cervical spine biomechanics? A finite element investigation. Eur Spine J. doi:10.1007/s00586-009-1211-6

  45. Shin DA, Yi S, Yoon do H, Kim KN, Shin HC (2009) Artificial disc replacement combined with fusion versus two-level fusion in cervical two-level disc disease. Spine J 34(11):1153–1159

    Article  Google Scholar 

  46. Faizan A, Goel VK, Krishna M, Friesem T (2007) Effects of removal of uncinate process in the cervical disc replacement model: a finite element study. 53rd annual meeting of Orthopedic Research Society, San Diego, CA

    Google Scholar 

  47. Snyder JT, Tzermiadianos MN, Ghanayem AJ, Voronov LI, Rinella A, Dooris A, Carandang G, Renner SM, Havey RM, Patwardhan AG (2007) Effect of uncovertebral joint excision on the motion response of the cervical spine after total disc replacement. Spine J 32(26):2965–2969

    Article  Google Scholar 

  48. Faizan A, Goel VK, Krishna M, Friesem T (2008) Placement of artificial disc affects the biomechanics of the cervical spine: a finite element investigation. Spine Arthroplasty Society, Miami

    Google Scholar 

  49. Demetropoulos CK, Srinivasan S, Bilkhu SK, Hardy WN, Yang KH, Bishop J, Abjornson C, Bey MJ, Herkowitz HN, Bartol SW (2008) Consequences of whiplash injury following ProDisc-C disc replacement: evaluation of cervical kinematics during low speed rear-end impact. Spine Arthroplasty Society, Miami

    Google Scholar 

  50. Faizan A, Goel VK, Elgafy H, Kodigudla M, Chikka A (2009) Effects of whiplash injury to the mechanics of a cervical specimen implanted with disc—an in vitro study SAS09, ninth annual global symposium on motion preservation technology, London, England; April 28–May 01

  51. Rohlmann A, Bergmann G, Graichen F (1997) Loads on an internal spinal fixation device during walking. J Biomech 30(1):41–47

    Article  PubMed  CAS  Google Scholar 

  52. Rohlmann A, Bergmann G, Graichen F (1999) Loads on internal spinal fixators measured in different body positions. Eur Spine J 8(5):354–359

    Article  PubMed  CAS  Google Scholar 

  53. Rohlmann A, Bergmann G, Graichen F, Mayer HM (1995) Telemeterized load measurement using instrumented spinal internal fixators in a patient with degenerative instability. Spine 20(24):2683–2689

    Article  PubMed  CAS  Google Scholar 

  54. Rohlmann A, Bergmann G, Graichen F, Weber U (1995) In vivo measurement of implant loads in a patient with a fractured vertebral body. Eur Spine J 4(6):347–353

    Article  PubMed  CAS  Google Scholar 

  55. Rohlmann A, Graichen F, Weber U, Bergmann G (2000) Monitoring in vivo implant loads with a telemeterized internal spinal fixation device. Spine 25(23):2981–2986

    Article  PubMed  CAS  Google Scholar 

  56. Rohlmann A, Bergmann G, Graichen F, Mayer HM (1998) Influence of muscle forces on loads in internal spinal fixation devices. Spine 23(5):537–542

    Article  PubMed  CAS  Google Scholar 

  57. Matyas A, Goel V, Vadapalli S, Khandha A, Navarro R, Biyani A, Cameron B (2004) Motion characteristics of a metal-on-polymer disc and a telemeterized natural motion elastomer disc (TNMED)—a finite element study. In: 31st annual meeting of International Society for the Study of Lumbar Spine, Porto, Portugal, May 31–June 5

  58. Kong WZ, Goel VK, Gilbertson LG, Weinstein JN (1996) Effects of muscle dysfunction on lumbar spine mechanics. A finite element study based on a two motion segments model. Spine 21(19):2197–2206

    Article  PubMed  CAS  Google Scholar 

  59. Marras WS, Knapik G, Gabriel J (2007) The development of a personalized hybrid emg-assisted/finite element biomechanical model to assess surgical options, Chap 88. In: Yue JJ, Bertagnoli R, McAfee P, An H (eds) Motion preservation surgery of the spine: advanced techniques and controversies. PM Gordon Associates, Philadelphia, PA, pp 687–694

  60. Phillips FM, Garfin SR (2005) Cervical disc replacement. Spine 30(17 Suppl):S27–S33

    Article  PubMed  Google Scholar 

  61. Durbhakula M, Ghiselli G (2005) Cervical total disc replacement, part i: rationale, biomechanics, and implant types. Orthop Clin North Am 36(3):349–354

    Article  PubMed  Google Scholar 

  62. Phillips FM, Tzermiadianos MN, Voronov LI, Havey RM, Carandang G, Dooris A, Patwardhan AG (2009) Effect of two-level total disc replacement on cervical spine kinematics. Spine J 34(2):E794–E799

    Google Scholar 

  63. Goel VK, Ramirez SA, Kong W, Gilbertson LG (1995) Cancellous bone Young’s modulus variation within the vertebral body of a ligamentous lumbar spine-application of bone adaptive remodeling concepts. J Biomech Eng 117(3):266–271

    Article  PubMed  CAS  Google Scholar 

  64. Grosland NM, Goel VK (2007) Vertebral endplate morphology follows bone remodeling principles. Spine 32(23):E667–E673

    Article  PubMed  Google Scholar 

  65. Anderson PA, Rouleau JP (2004) Intervertebral disc arthroplasty. Spine 29(23):2779–2786

    Article  PubMed  Google Scholar 

  66. Bertagnoli R, Zigler J, Karg A, Voigt S (2005) Complications and strategies for revision surgery in total disc replacement. Orthop Clin North Am 36(3):389–395

    Article  PubMed  Google Scholar 

  67. Lin CY, Kang H, Rouleau JP, Hollister SJ, Marca FL (2009) Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study. Spine 34(15):1554–1560

    Article  PubMed  Google Scholar 

  68. Sekhon LH, Ball JR (2005) Artificial cervical disc replacement: principles, types and techniques. Neurol India 53(4):445–450

    Article  PubMed  CAS  Google Scholar 

  69. Chang UK, Kim DH, Lee MC, Willenberg R, Kim SH, Lim J (2007) Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion. J Neurosurg Spine 7(1):33–39

    Article  PubMed  Google Scholar 

  70. Metzger MF, Acosta FL, Buckley JM, O’Reilly OM, Lotz JL (2008) Facet forces sensitive to total disc replacement device position. Orthopedics Research Society, San Francisco, CA

  71. Stieber J, Quirno M, Kang M, Valdevit A, Errico TJ (2008) The facet joint loading profile of a cervical intervertebral disc replacement. Orthopedic Research Society, San Francisco

    Google Scholar 

  72. De Jongh CU, Basson AH, Scheffer C (2008) Predictive modelling of cervical disc implant wear. J Biomech 41(15):3177–3183

    Article  PubMed  Google Scholar 

  73. Vicars R, Brown T, Fisher J, Hall R (2009) Agreement between novel physical and computational wear simulations for total disc replacement. In: 55th annual meeting of Orthopedic Research Society, Las Vegas, NV

  74. Bhattacharya S, Liu X, Kiapour A, Goel VK, Serhan H (2010) Models that incorporate spinal structures predict better wear performance of cervical artificial discs

  75. Rohlmann A, Boustani HN, Bergmann G, Zander T (2010) A probabilistic finite element analysis of the stresses in the augmented vertebral body after vertebroplasty. Eur Spine J [Epub ahead of print]

  76. Herrmann AM, Geisler FH (2004) Geometric results of anterior cervical plate stabilization in degenerative disease. Spine 29(11):1226–1234

    Article  PubMed  Google Scholar 

  77. Ochia RS, Inoue N, Takatori R, Andersson GB, An HS (2007) In vivo measurements of lumbar segmental motion during axial rotation in asymptomatic and chronic low back pain male subjects. Spine 32(13):1394–1399

    Article  PubMed  Google Scholar 

  78. Bono CM, Khandha A, Vadapalli S, Holekamp S, Goel VK, Garfin SR (2007) Residual sagittal motion after lumbar fusion: a finite element analysis with implications on radiographic flexion-extension criteria. Spine 32(4):417–422

    Article  PubMed  Google Scholar 

  79. Cargill SC, Pearcy M, Barry MD (2007) Three-dimensional lumbar spine postures measured by magnetic resonance imaging reconstruction. Spine 32(11):1242–1248

    Article  PubMed  Google Scholar 

  80. Ochia RS, Inoue N, Renner SM, Lorenz EP, Lim TH, Andersson GB, An HS (2006) Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine 31(18):2073–2078

    Article  PubMed  Google Scholar 

  81. Pearcy MJ, Whittle MW (1982) Movements of the lumbar spine measured by three-dimensional X-ray analysis. J Biomed Eng 4(2):107–112

    Article  PubMed  CAS  Google Scholar 

  82. Lim TH, Eck JC, An HS, McGrady LM, Harris GF, Haughton VM (1997) A noninvasive, three-dimensional spinal motion analysis method. Spine 22(17):1996–2000

    Article  PubMed  CAS  Google Scholar 

  83. Conrad B, Jacob P, Banks S (2007) Accurate measurement of cervical disc replacement kinematics using single plane fluoroscopy. In: 7th annual meeting of the global symposium on motion preservation technology, Berlin, Germany

  84. Rogers BP, Haughton VM, Arfanakis K, Meyerand ME (2002) Application of image registration to measurement of intervertebral rotation in the lumbar spine. Magn Reson Med 48(6):1072–1075

    Article  PubMed  Google Scholar 

  85. Haughton VM, Rogers B, Meyerand ME, Meyerand ME (2002) Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. AJNR Am J Neuroradiol 23(7):1110–1116

    PubMed  Google Scholar 

  86. Gunnarsson G, Axelsson P, Johnsson R, Strömqvist B (2000) A method to evaluate the in vivo behaviour of lumbar spine implants. Eur Spine J 9(3):230–234

    Article  PubMed  CAS  Google Scholar 

  87. Axelsson P, Karlsson BS (2004) Intervertebral mobility in the progressive degenerative process. A radiostereometric analysis. Eur Spine J 13(6):567–572

    Article  PubMed  Google Scholar 

  88. Nathaniel RO, Amir HF et al (2008) Twelve-month follow-up of lumbar spine range of motion following intervertebral disc replacement using radiostereometric analysis. Spine Arthroplasty Soc 2(1):9–15

    Google Scholar 

  89. Robertson JT, Metcalf NH (2004) Long-term outcome after implantation of the Prestige I disc in an end-stage indication: 4-year results from a pilot study. Neurosurg Focus 17(3):E10

    Article  PubMed  Google Scholar 

  90. Rabin D, Pickett GE, Bisnaire L, Duggal N (2007) The kinematics of anterior cervical discectomy and fusion versus artificial cervical disc: a pilot study. Neurosurgery (3 Suppl):100–104; discussion 104–105

  91. Yang S, Hu Y, Zhao J, He X, Liu Y, Xu W, Du J, Fu D (2007) Follow-up study on the motion range after treatment of degenerative disc disease with the bryan cervical disc prosthesis. J Huazhong Univ Sci Technol 27(2):176–178

    Google Scholar 

  92. Pickett GE, Rouleau JP, Duggal N et al (2007) Kinematic analysis of the cervical spine following implantation of an artificial cervical disc. Spine J 30(17):1949–1954

    Google Scholar 

  93. Dooris AP, Goel VK, Grosland NM, Gilbertson LG, Wilder DG (2001) Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 26(6):E122–E129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work supported in part by grants from DePuy Spine, Medtronic Inc, Abbott Spine, OrthoKinetic Technologies, LLC, DMT Inc, and Ohio Research Scholar Program.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay K. Goel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, V.K., Faizan, A., Palepu, V. et al. Parameters that effect spine biomechanics following cervical disc replacement. Eur Spine J 21 (Suppl 5), 688–699 (2012). https://doi.org/10.1007/s00586-011-1816-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-1816-4

Keywords

Navigation