Skip to main content

Advertisement

Log in

Decreased phospholipase A2 activity in cerebrospinal fluid of patients with dementia

  • Alzheimer's Disease and Related Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Phospholipase A2 (PLA2) is involved in important aspects of dementia, for example neurotransmission and memory processing, membrane function, choline availability, and antioxidative defense. Reduced PLA2-activity has been reported so far in blood samples and postmortem neuronal tissue in Alzheimer disease. For the first time, we studied PLA2 in cerebrospinal fluid (CSF) in Alzheimer disease (AD), vascular (VD), and mixed Alzheimer/vascular dementia (MD). Intracellular PLA2 was assessed in CSF of 16 AD, 12 VD, 15 MD patients, and 19 healthy control subjects. A fluorometric assay was applied using the PLA2-specific substrate NBDC6-HPC. Significantly reduced PLA2 activity was not only found in AD, but also in VD and MD. This finding was independent of demographic co-variates and medication. PLA2 results in CSF corroborate previous findings of impaired PLA2 function in Alzheimer’s disease and extend these to patients with VD. They are likely to reflect an involvement of PLA2 impairment in a variety of pathomechanisms crucial in different dementia subtypes, in which disruption of cholinergic neurotransmission and disturbance of intact membrane function appear to be the key mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albers M, Meurer H, Marki F, Klotz J (1993) Phospholipase A2 activity in serum of neuroleptic-naive psychiatric inpatients. Pharmacopsychiatry 26:94–98

    PubMed  CAS  Google Scholar 

  • Baba N, Nikami Y, Shigeta Y, Nakajima S, Kaneko T, Matsuo M (1993) Hydrolysis of glycerophosphocholine hydroperoxide by phospholipase A2. Biosci Biotechnol Biochem 57:2200–2201

    CAS  Google Scholar 

  • Balsinde J, Balboa MA, Insel PA, Dennis EA (1999) Regulation and inhibition of phospholipase A2. Annu Rev Pharmacol Toxicol 39:175–89

    Article  PubMed  CAS  Google Scholar 

  • Barbour SE, Kapur A, Deal CL (1999) Regulation of phosphatidylcholine homeostasis by calcium-independent phospholipase A2. Biochim Biophys Acta 1439:77–88

    PubMed  CAS  Google Scholar 

  • Battaglia F, Wang HY, Ghilardi MF, Gashi E, Quartarone A, Friedman E, Nixon RA (2007) Cortical plasticity in Alzheimer’s disease in humans and rodents. Biol Psychiatry 62:1405–1412

    Article  PubMed  CAS  Google Scholar 

  • Bickel H (2000) Dementia syndrome and Alzheimer disease: an assessment of morbidity and annual incidence in Germany. Health Care 62:211–218

    CAS  Google Scholar 

  • Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J, Kanof P, Davis KL (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64:749–760

    PubMed  CAS  Google Scholar 

  • Bloch-Shilderman E, Abu-Raya S, Trembovler V, Boschwitz H, Gruzman A, Linial M, Lazarovici P (2002) Pardaxin stimulation of phospholipases A2 and their involvement in exocytosis in PC–12 cells. J Pharmacol Exp Ther 301:953–962

    Article  PubMed  CAS  Google Scholar 

  • Blusztajn JK, Liscovitch M, Richardson UI (1987) Synthesis of acetylcholine from choline derived from phosphatidylcholine in a human neuronal cell line. Proc Natl Acad Sci USA 84:5474–5477

    Article  PubMed  CAS  Google Scholar 

  • Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, Hsiao KK (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2:271–276

    Article  PubMed  CAS  Google Scholar 

  • Chui HC, Victoroff JI, Margolin D, Jagust W, Shankle R, Katzman R (1992) Criteria for the diagnosis of ischemic vascular dementia proposed by the State of California Alzheimer’s Disease Diagnostic and Treatment Centers. Neurology 42:473–480

    PubMed  CAS  Google Scholar 

  • Clarke MS, Prendergast MA, Terry AV Jr (1999) Plasma membrane ordering agent pluronic F–68 (PF–68) reduces neurotransmitter uptake and release and produces learning and memory deficits in rats. Learn Mem 6:634–649

    Article  PubMed  CAS  Google Scholar 

  • Cohen CA, Gold DP, Shulman KI, Wortley JT, McDonald G, Wargon M (1993) Factors determining the decision to institutionalize dementing individuals: a prospective study. Gerontologist 33:714–720

    PubMed  CAS  Google Scholar 

  • Dawson GR, Seabrook GR, Zheng H, Smith DW, Graham S, O’Dowd G, Bowery BJ, Boyce S, Trumbauer ME, Chen HY, Van der Ploeg LH, Sirinathsinghji DJ (1999) Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience 90:1–13

    Article  PubMed  CAS  Google Scholar 

  • Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060

    PubMed  CAS  Google Scholar 

  • Eckert GP, Cairns NJ, Maras A, Gattaz WF, Muller WE (2000) Cholesterol modulates the membrane-disordering effects of beta-amyloid peptides in the hippocampus: specific changes in Alzheimer’s disease. Dement Geriatr Cogn Disord 11:181–186

    Article  PubMed  CAS  Google Scholar 

  • Farooqui AA, Hirashima Y, Horrocks LA (1992) Brain phospholipases and their role in signal transduction. In: Bazan NG, Toffano G, Murphy M (eds) Neurobiology of essential fatty acids. Plenum Press, New York, pp 11–25

    Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2000) Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 106:1–29

    Article  PubMed  CAS  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2004) Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29:1961–1977

    Article  PubMed  CAS  Google Scholar 

  • Folstein MF, Folstein SE, Hugh PR (1975) “Mini-Mental State”. A practical method for grading the cognitive state of patients for the clinican. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Fujita S, Ikegaya Y, Nishikawa M, Nishiyama N, Matsuki N (2001) Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Br J Pharmacol 132:1417–1422

    Article  PubMed  CAS  Google Scholar 

  • Fujita S, Ikegaya Y, Nishiyama N, Matsuki N (2000) Ca2+-independent phospholipase A2 inhibitor impairs spatial memory of mice. Jpn J Pharmacol 83:277–278

    Article  PubMed  CAS  Google Scholar 

  • Gattaz WF, Kollisch M, Thuren T, Virtanen JA, Kinnunen PK (1987) Increased plasma phospholipase-A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol Psychiatry 22:421–426

    Article  PubMed  CAS  Google Scholar 

  • Gattaz WF, Hubner CV, Nevalainen TJ, Thuren T, Kinnunen PK (1990) Increased serum phospholipase A2 activity in schizophrenia: a replication study. Biol Psychiatry 28:495–501

    PubMed  CAS  Google Scholar 

  • Gattaz WF, Schmitt A, Maras A (1995) Increased platelet phospholipase A2 activity in schizophrenia. Schizophr Res 16:1–6

    Article  PubMed  CAS  Google Scholar 

  • Gattaz WF, Cairns NJ, Levy R, Forstl H, Braus DF, Maras A (1996a) Decreased phospholipase A2 activity in the brain and in platelets of patients with Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 246:129–131

    Article  PubMed  CAS  Google Scholar 

  • Gattaz WF, Levy R, Cairns NJ, Forstl H, Braus DF, Maras A (1996b) Relevance of metabolism of membrane phospholipids for Alzheimer dementia. Prog Neurol Psychiatry 64:8–12

    CAS  Google Scholar 

  • Gattaz WF, Forlenza OV, Talib LL, Barbosa NR, Bottino CM (2004) Platelet phospholipase A2 activity in Alzheimer’s disease and mild cognitive impairment. J Neural Transm 111:591–601

    Article  PubMed  CAS  Google Scholar 

  • Gsell W, Strein I, Riederer P (1996) The neurochemistry of Alzheimer type, vascular type and mixed type dementias compared. J Neural Transm 47:73–101

    CAS  Google Scholar 

  • Gsell W, Jungkunz G, Riederer P (2004) Functional neurochemistry of Alzheimer’s disease. Curr Pharm Des 10:265–293

    Article  PubMed  CAS  Google Scholar 

  • Hentschel F, Supprian T, Frölich L (2005) Alzheimer’s dementia versus vaskular dementia—dichotomia or interaction? Prog Neurol Psychiatry 73:317–326

    CAS  Google Scholar 

  • Hölscher C, Rose SP (1994) Inhibitors of phospholipase A2 produce amnesia for a passive avoidance task in the chick. Behav Neural Biol 61:225–232

    Article  PubMed  Google Scholar 

  • Hölscher C, Canevari L, Richter-Levin G (1995) Inhibitors of PLA2 and NO synthase cooperate in producing amnesia of a spatial task. Neuroreport 6:730–2

    PubMed  Google Scholar 

  • Hong A (1995) The neural basis of learning and memory declines in aged rats. Sheng Li Ke Xue Jin Zhan 26:240–242

    PubMed  CAS  Google Scholar 

  • Ihara Y, Hayabara T, Sasaki K, Fujisawa Y, Kawada R, Yamamoto T, Nakashima Y, Yoshimune S, Kawai M, Kibata M, Kuroda S (1997) Free radicals and superoxide dismutase in blood of patients with Alzheimer’s disease and vascular dementia. J Neurol Sci 9:76–81

    Article  Google Scholar 

  • Jellinger KA (2002) Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 109:813–836

    Article  PubMed  CAS  Google Scholar 

  • Jenkins CM, Han X, Mancuso DJ, Gross RW (2002) Identification of calcium-independent phospholipase A2 (iPLA2) beta, and not iPLA2gamma, as the mediator of arginine vasopressin-induced arachidonic acid release in A–10 smooth muscle cells. Enantioselective mechanism-based discrimination of mammalian iPLA2 s. J Biol Chem 277:32807–14

    Article  PubMed  CAS  Google Scholar 

  • Kalaria RN, Ballard C (1999) Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord 13:115–123

    Article  Google Scholar 

  • Katila H, Appelberg B, Rimon R (1997) No differences in phospholipase-A2 activity between acute psychiatric patients and controls. Schizophr Res 26:103–105

    Article  PubMed  CAS  Google Scholar 

  • Lasch J, Willhardt I, Kinder D, Sauer H, Smesny S (2003) Fluorometric assays of phospholipase A2 activity with three different substrates in biological samples of patients with schizophrenia. Clin Chem Lab Med 41:908–914

    Article  PubMed  CAS  Google Scholar 

  • Law MH, Cotton RG, Berger GE (2006) The role of phospholipases A2 in schizophrenia. Mol Psychiatry 11:547–556

    Article  PubMed  CAS  Google Scholar 

  • Lucas KK, Svensson CI, Hua XY, Yaksh TL, Dennis EA (2005) Spinal phospholipase A2 in inflammatory hyperalgesia: role of group IVA cPLA2. Br J Pharmacol 144:940–952

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2002) Oxidative stress, perturbed calcium homeostasis, and immune dysfunction in Alzheimer’s disease. J Neurovirol 8:539–550

    Article  PubMed  CAS  Google Scholar 

  • McLean LR, Hagaman KA, Davidson WS (1993) Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28:505–509

    Article  PubMed  CAS  Google Scholar 

  • Mecocci R, Cherubini A, Beal MF, Cecchetti R, Chionne E, Polidori MC, Romano G, Senin U (1996) Altered mitochondrial membrane fluidity in AD brain. Neurosci Lett 207:129–132

    Article  PubMed  CAS  Google Scholar 

  • Mecocci P, Beal MF, Cecchetti R, Polidori MC, Cherubini A, Chionne F, Avellini L, Romano G, Senin U (1997) Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol Chem Neuropathol 31:53–64

    Article  PubMed  CAS  Google Scholar 

  • Morris JC (1997) Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr 9:173–176

    Article  PubMed  Google Scholar 

  • Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, Mellits ED, Clark C (1989) The consortium to establish a registry for alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165

    PubMed  CAS  Google Scholar 

  • Morton RA, Kuenzi FM, Fitzjohn SM, Rosahl TW, Smith D, Zheng H, Shearman M, Collingridge GL, Seabrook GR (2002) Impairment in hippocampal long-term potentiation in mice under-expressing the Alzheimer’s disease related gene presenilin-1. Neurosci Lett 319:37–40

    Article  PubMed  CAS  Google Scholar 

  • Noponen M, Sanfilipo M, Samanich K, Ryer H, Ko G, Angrist B, Wolkin A, Duncan E, Rotrosen J (1993) Elevated PLA2 activity in schizophrenics and other psychiatric patients. Biol Psychiatry 34:641–649

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759–767

    PubMed  CAS  Google Scholar 

  • Oswald WD, Fleischmann UM (1999) Nürnberger-Alters-Inventar (NAI). Testmanual und Textband, Hogrefe, Göttingen

    Google Scholar 

  • Paragh G, Balla P, Katona E, Seres I, Egerhazi A, Degrell I (2002) Serum paraoxonase activity changes in patients with Alzheimer’s disease and vascular dementia. Eur Arch Psychiatry Clin Neurosci 252:63–67

    Article  PubMed  Google Scholar 

  • Perry G, Cash AD, Smith MA (2002) Alzheimer's disease and oxidative stress. J Biomed Biotechnol 2:120–123

    Article  PubMed  Google Scholar 

  • Pratt RD, Perdomo CA (2002) Donepezil-treated patients with probable vascular dementia demonstrate cognitive benefits. Ann NY Acad Sci 977:513–522

    Article  PubMed  CAS  Google Scholar 

  • Ray P, Ishida H, Millard CB, Petrali JP, Ray R (1999) Phospholipaise A2 and arachidonic acid-mediated mechanism of neuroexocytosis: a possible target of botidinum neurotoxin A other then SNAP-25. J Appl Toxicol 19:27–28

    Article  Google Scholar 

  • Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Orgogozo JM, Brun A, Hofman A (1993) Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43:250–260

    PubMed  CAS  Google Scholar 

  • Ross BM, Hudson C, Erlich J, Warsh JJ, Kish SJ (1997) Increased phospholipid breakdown in schizophrenia. Evidence for the involvement of a calcium-independent phospholipase A2. Arch Gen Psychiatry 54:487–494

    PubMed  CAS  Google Scholar 

  • Ross BM, Moszczynska A, Erlich J, Kish SJ (1998) Phospholipid-metabolizing enzymes in Alzheimer’s disease: increased lysophospholipid acyltransferase activity and decreased phospholipase A2 activity. J Neurochem 70:786–793

    PubMed  CAS  Google Scholar 

  • Ross BM, Turenne S, Moszczynska A, Warsh JJ, Kish SJ (1999) Differential alteration of phospholipase A2 activities in brain of patients with schizophrenia. Brain Res 821:407–413

    Article  PubMed  CAS  Google Scholar 

  • Salgo MG, Corongiu FP, Sevanian A (1993) Enhanced interfacial catalysis and hydrolytic specificity of phospholipase A2 toward peroxidized phosphatidylcholine vesicles. Arch Biochem Biophys 304:123–132

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Ishida T, Irifune M, Tanaka K, Hirate K, Nakamura N, Nishikawa T (2007) Effect of NC-1900, an active fragment analog of arginine vasopressin, and inhibitors of arachidonic acid metabolism on performance of a passive avoidance task in mice. Eur J Pharmacol 560:36–41

    Article  PubMed  CAS  Google Scholar 

  • Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68:2092–2097

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer EL, Gattaz WF (2005) Inhibition of calcium-independent phospholipase A2 activity in rat hippocampus impairs acquisition of short- and long-term memory. Psychopharmacology 181:392–400

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer EL, Gattaz WF (2007) Requirement of hippocampal phospholipase A2 activity for long-term memory retrieval in rats. J Neural Transm 114:379–385

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer EL, Bassi F Jr, Gattaz WF (2005) Inhibition of phospholipase A2 activity reduces membrane fluidity in rat hippocampus. J Neural Transm 112:641–647

    Article  PubMed  CAS  Google Scholar 

  • Seigerschmidt E, Mösch E, Siemen M, Förstl H, Bickel H (2002) The clock drawing test and questionable dementia: Reliability and validity. Int J Geriatr Psychiatr 17:1048–1054

    Article  Google Scholar 

  • Shulman KI (2000) Clock-drawing: is it the ideal cognitive screening test? Int J Geriatr Psychiatry 15:548–561

    Article  PubMed  CAS  Google Scholar 

  • Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim Biophys Acta 1488:1–19

    PubMed  CAS  Google Scholar 

  • Smesny S, Kinder D, Willhardt I, Rosburg T, Lasch J, Berger G, Sauer H (2005) Increased Calcium-independent phospholipase A2 activity in first but not in multi-episode chronic schizophrenia. Biol Psychiatry 57:399–405

    Article  PubMed  CAS  Google Scholar 

  • Song H, Ramanadham S, Bao S, Hsu FF, Turk J (2006) A bromoenol lactone suicide substrate inactivates group VIA phospholipase A2 by generating a diffusible bromomethyl keto acid that alkylates cysteine thiols. Biochemistry 45:1061–73

    Article  PubMed  CAS  Google Scholar 

  • Sun GY, Xu J, Jensen MD, Simonyi A (2004) Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. Lipid Res 45:205–213

    Article  CAS  Google Scholar 

  • Talbot K, Young RA, Jolly-Tornetta C, Lee VM, Trojanowski JQ, Wolf BA (2000) A frontal variant of Alzheimer’s disease exhibits decreased calcium-independent phospholipase A2 activity in the prefrontal cortex. Neurochem Int 37:17–31

    Article  PubMed  CAS  Google Scholar 

  • Taketo MM, Masahiro S (2002) Phospholipase A2 and apoptosis. Biochim Biophys Acta 1585:72–76

    PubMed  CAS  Google Scholar 

  • Tavares H, Yacubian J, Talib LL, Barbosa NR, Gattaz WF (2003) Increased phospholipase A2 activity in schizophrenia with absent response to niacin. Schizophr Res 61:1–6

    Article  PubMed  Google Scholar 

  • Tomimoto H, Ohtani R, Shibata M, Nakamura N, Ihara M (2005) Loss of cholinergic pathways in vascular dementia of the Binswanger type. Dement Geriatr Cogn Disord 19:282–288

    Article  PubMed  CAS  Google Scholar 

  • van den Berg JJ, Op den Kamp JA, Lubin BH, Kuypers FA (1993) Conformational changes in oxidized phospholipids and their preferential hydrolysis by phospholipase A2: a monolayer study. Biochemistry 32:4962–4967

    Article  PubMed  Google Scholar 

  • White MC, McHowat J (2007) Protease activation of calcium-independent phospholipase A2 leads to neutrophil recruitment to coronary artery endothelial cells. Thromb Res 120:597–605

    Article  PubMed  CAS  Google Scholar 

  • Wolf MJ, Izumi Y, Zorumski CF, Gross RW (1995) Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett 377:358–362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr Stefan Smesny was supported by the German Research Foundation (DFG), grant Sm 68/1-1. Prof Jürgen Lasch was getting financial support by the German Research Foundation (DFG), grant LA 759/5-1. The financial support by the DFG was helpful and necessary to prepare and perform the chemical analysis of PLA2 activity in CSF. The authors would also like to thank the staff of the Department of Psychiatry and the Department of Neurology of the University of Jena for their extensive support in performing the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Smesny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smesny, S., Stein, S., Willhardt, I. et al. Decreased phospholipase A2 activity in cerebrospinal fluid of patients with dementia. J Neural Transm 115, 1173–1179 (2008). https://doi.org/10.1007/s00702-008-0081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0081-0

Keywords

Navigation