Skip to main content

Advertisement

Log in

Aging and α-synuclein affect synaptic plasticity in the dentate gyrus

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Although intracellular accumulation of α-synuclein (α-syn) is a characteristic pathological change in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease, the normal function of this presynaptic protein is still unknown. To assess the contribution of α-syn to synaptic plasticity as well as to age-related synaptic degeneration in mice, we compared adult and aged mice overexpressing mutated (A30P) human α-syn with their nontransgenic littermates using behavioral tests and electrophysiological measures in the dentate gyrus. We found decreased basal synaptic transmission and paired-pulse facilitation in the perforant path-dentate granule cell synapses of aged mice. In addition, α-syn accumulation in aged A30P mice but not in aged wild-type mice led to long-term depression of synaptic transmission after a stimulation protocol that normally induces long-term potentiation. These findings suggest that overexpression of mutated α-syn exacerbates the aging process and leads to impaired synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertson TE, Joy RM (1989) Modification of evoked hippocampal dentate inhibition by diazepam and three antagonists in urethane-anesthetized rats. Exp Neurol 106:142–149

    Article  PubMed  CAS  Google Scholar 

  • Bannerman DM, Gilmour G, Norman G et al (2001) The time course of the hyperactivity that follows lesions or temporary inactivation of the fimbria-fornix. Behav Brain Res 120:1–11

    Article  PubMed  CAS  Google Scholar 

  • Barnes CA (1994) Normal aging: regionally specific changes in hippocampal synaptic transmission. Trends Neurosci 17:13–18

    Article  PubMed  CAS  Google Scholar 

  • Barnes CA, McNaughton BL (1980) Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence. J Physiol 309:473–485

    PubMed  CAS  Google Scholar 

  • Bender A, Krishnan KJ, Morris CM et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

    Article  PubMed  CAS  Google Scholar 

  • Bennett MC (2005) The role of alpha-synuclein in neurodegenerative diseases. Pharmacol Ther 105:311–331

    Article  PubMed  CAS  Google Scholar 

  • Bi GQ, Rubin J (2005) Timing in synaptic plasticity: from detection to integration. Trends Neurosci 28:222–228

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  • Bliss TVP, Collingridge G, Morris R (2007) Synaptic plasticity in the hippocampus. In: Andersen P et al (eds) The hippocampus book. Oxford University Press, New York

    Google Scholar 

  • Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30–40

    Article  PubMed  CAS  Google Scholar 

  • Chu Y, Kordower JH (2007) Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis 25:134–149

    Article  PubMed  CAS  Google Scholar 

  • Clayton DF, George JM (1999) Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res 58:120–129

    Article  PubMed  CAS  Google Scholar 

  • Di Rosa G, Puzzo D, Sant’Angelo A et al (2003) Alpha-synuclein: between synaptic function and dysfunction. Histol Histopathol 18:1257–1266

    PubMed  CAS  Google Scholar 

  • Errington ML, Bliss TVP, Richter-Levin G et al (1995) Stimulation at 1–5 Hz does not produce long-term depression or depotentiation in the hippocampus of the adult rat in vivo. J Neurophysiol 74:1793–1799

    PubMed  CAS  Google Scholar 

  • Fredriksson A, Plaznik A, Sundström E et al (1990) MPTP-induced hypoactivity in mice: reversal by L-dopa. Pharm Toxicol 67:295–301

    Article  CAS  Google Scholar 

  • Freichel C, Neumann M, Ballard T et al (2007) Age-dependent cognitive decline and amygdala pathology in alpha-synuclein transgenic mice. Neurobiol Aging 28:1421–1435

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  • Froc DJ, Eadie B, Li AM et al (2003) Reduced synaptic plasticity in the lateral perforant path input to the dentate gyrus of aged C57BL/6 mice. J Neurophysiol 90:32–38

    Article  PubMed  Google Scholar 

  • Galvin JE, Lee VM, Trojanowski JQ (2001) Synucleinopathies: clinical and pathological implications. Arch Neurol 58:186–190

    Article  PubMed  CAS  Google Scholar 

  • Gavilan MP, Revilla E, Pintado C et al (2007) Molecular and cellular characterization of the age-related neuroinflammatory processes occurring in normal rat hippocampus: potential relation with the loss of somatostatin GABAergic neurons. J Neurochem 103:984–996

    Article  PubMed  CAS  Google Scholar 

  • Gilbert ME, Burdette LJ (1996) Enhancement of paired-pulse depression in the dentate gyrus in vivo by the NMDA antagonist, MK-801, and electrical kindling. Brain Res 732:201–208

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Isla T, Irizarry MC, Mariash A et al (2003) Motor dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 24:245–258

    Article  PubMed  CAS  Google Scholar 

  • Gureviciene I, Gurevicius K, Tanila H (2007) Role of alpha-synuclein in synaptic glutamate release. Neurobiol Dis 28:83–89

    Article  PubMed  CAS  Google Scholar 

  • Iivonen H, Nurminen L, Harri M et al (2003) Hypothermia in mice tested in Morris water maze. Behav Brain Res 141:207–213

    Article  PubMed  Google Scholar 

  • Iseki E, Marui W, Kosaka K et al (1998) Degenerative terminals of the perforant pathway are human alpha-synuclein-immunoreactive in the hippocampus of patients with diffuse Lewy body disease. Neurosci Lett 258:81–84

    Article  PubMed  CAS  Google Scholar 

  • Jakala P, Puolivali J, Kerokoski P et al (2002) Intracellular alpha-synuclein (alpha-syn) accumulation in transgenic mice expressing A30P alpha-syn mutation. Neurobiol Aging 23:S252

    Google Scholar 

  • Kahle PJ, Neumann M, Ozmen L et al (2000) Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci 20:6365–6373

    PubMed  CAS  Google Scholar 

  • Marder CP, Buonomano DV (2003) Differential effects of short- and long-term potentiation on cell firing in the CA1 region of the hippocampus. J Neurosci 23:112–121

    PubMed  CAS  Google Scholar 

  • McNaughton BL (1982) Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms. J Physiol 324:249–262

    PubMed  CAS  Google Scholar 

  • Melrose HL, Lincoln SJ, Tyndall GM et al (2006) Parkinson’s disease: a rethink of rodent models. Exp Brain Res 173:196–204

    Article  PubMed  Google Scholar 

  • Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9:967–975

    Article  PubMed  CAS  Google Scholar 

  • Narayanan V, Guo Y, Scarlata S (2005) Fluorescence studies suggest a role for alpha-synuclein in the phosphatidylinositol lipid signaling pathway. Biochemistry 44:462–470

    Article  PubMed  CAS  Google Scholar 

  • Norris EH, Giasson BI, Lee VM (2004) Alpha-synuclein: normal function and role in neurodegenerative diseases. Curr Top Dev Biol 60:17–54

    Article  PubMed  CAS  Google Scholar 

  • Rich-Bennett E, Dahl D, Lecompte BB 3rd (1993) Modulation of paired-pulse activation in the hippocampal dentate gyrus by cholecystokinin, baclofen and bicuculline. Neuropeptides 24:263–270

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 69:143–179

    Article  PubMed  CAS  Google Scholar 

  • Sidhu A, Wersinger C, Moussa CE et al (2004) The role of alpha-synuclein in both neuroprotection and neurodegeneration. Ann N Y Acad Sci 1035:250–270

    Article  PubMed  CAS  Google Scholar 

  • Small SA (2003) Measuring correlates of brain metabolism with high-resolution MRI: a promising approach for diagnosing Alzheimer disease and mapping its course. Alzheimer Dis Assoc Disord 17:154–161

    Article  PubMed  Google Scholar 

  • Specht CG, Schoepfer R (2001) Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci 2:11

    Article  PubMed  CAS  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  • Steidl JV, Gomez-Isla T, Mariash A et al (2003) Altered short-term hippocampal synaptic plasticity in mutant alpha-synuclein transgenic mice. Neuroreport 14:219–223

    Article  PubMed  Google Scholar 

  • Wang JH, Kelly PT (1997) Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms. J Neurophysiol 78:2707–2716

    PubMed  CAS  Google Scholar 

  • Yavich L, Tanila H, Vepsalainen S et al (2004) Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci 24:11165–11170

    Article  PubMed  CAS  Google Scholar 

  • Yavich L, Oksman M, Tanila H et al (2005) Locomotor activity and evoked dopamine release are reduced in mice overexpressing A30P-mutated human alpha-synuclein. Neurobiol Dis 20:303–313

    Article  PubMed  CAS  Google Scholar 

  • Zheng K, Kuteeva E, Xia S et al (2005) Age-related impairments of synaptic plasticity in the lateral perforant path input to the dentate gyrus of galanin overexpressing mice. Neuropeptides 39:259–267

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. Vepsäläinen and P. Räsänen (Department of Neuroscience and Neurology, University of Kuopio) for technical assistance in mouse genotyping and H. Iivonen (Department of Neurobiology, University of Kuopio) for technical assistance in water maze testing. This study was supported by the Finnish Cultural Foundation, the Northern-Savonia Foundation, and the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Gureviciene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gureviciene, I., Gurevicius, K. & Tanila, H. Aging and α-synuclein affect synaptic plasticity in the dentate gyrus. J Neural Transm 116, 13–22 (2009). https://doi.org/10.1007/s00702-008-0149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0149-x

Keywords

Navigation