Skip to main content

Advertisement

Log in

Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures

  • Movement Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Sequence variants at or near the leucine-rich repeat kinase 2 (LRRK2) locus have been associated with susceptibility to three human conditions: Parkinson's disease (PD), Crohn’s disease and leprosy. As all three disorders represent complex diseases with evidence of inflammation, we hypothesized a role for LRRK2 in immune cell functions. Here, we report that full-length Lrrk2 is a relatively common constituent of human peripheral blood mononuclear cells (PBMC) including affinity isolated, CD14+ monocytes, CD19+ B cells, and CD4+ as well as CD8+ T cells. Up to 26% of PBMC from healthy donors and up to 43% of CD14+ monocytes were stained by anti-Lrrk2 antibodies using cell sorting. PBMC lysates contained full-length (>260 kDa) and higher molecular weight Lrrk2 species. The expression of LRRK2 in circulating leukocytes was confirmed by microscopy of human blood smears and in sections from normal midbrain and distal ileum. Lrrk2 reactivity was also detected in mesenteric lymph nodes and spleen (including in dendritic cells), but was absent in splenic mononuclear cells from lrrk2-null mice, as expected. In cultured bone marrow-derived macrophages from mice we made three observations: (i) a predominance of higher molecular weight lrrk2; (ii) the reduction of autophagy marker LC3-II in R1441Clrrk2-mutant cells (<31%); and (iii) a significant up-regulation of lrrk2 mRNA (>fourfold) and protein after exposure to several microbial structures including bacterial lipopolysaccharide and lentiviral particles. We conclude that Lrrk2 is a constituent of many cell types in the immune system. Following the recognition of microbial structures, stimulated macrophages respond with altered lrrk2 gene expression. In the same cells, lrrk2 appears to co-regulate autophagy. A pattern recognition receptor-type function for LRRK2 could explain its locus' association with Crohn’s disease and leprosy risk. We speculate that the role of Lrrk2 in immune cells may also be relevant to the susceptibility of developing PD or its progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcaïs A, Mira M, Casanova JL, Schurr E, Abel L (2005) Genetic dissection of immunity in leprosy. Curr Opin Immunol 17:44–48

    Article  PubMed  Google Scholar 

  • Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins R (2009) LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 18:4022–4034

    Article  PubMed  CAS  Google Scholar 

  • Aleyasin H, Rousseaux MW, Marcogliese PC, Hewitt SJ, Irrcher I, Joselin AP, Parsanejad M, Kim RH, Rizzu P, Callaghan SM, Slack RS, Mak TW, Park DS (2010) DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc Natl Acad Sci USA 107:3186–3191

    Article  PubMed  CAS  Google Scholar 

  • Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, NIDDK IBD Genetics Consortium, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Belgian-French IBD Consortium, Wellcome Trust Case Control Consortium, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40:955–962

    Article  PubMed  CAS  Google Scholar 

  • Berger Z, Smith KA, Lavoie MJ (2010) Membrane localization of LRRK2 is associated with increased formation of the highly active LRRK2 dimer and changes in its phosphorylation. Biochemistry 49:5511–5523

    Article  PubMed  CAS  Google Scholar 

  • Biskup S, Moore DJ, Rea A, Lorenz-Deperieux B, Coombes CE, Dawson VL, Dawson TM, West AB (2007) Dynamic and redundant regulation of LRRK2 and LRRK1 expression. BMC Neurosci 8:102

    Article  PubMed  Google Scholar 

  • Braak H, Rüb U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536

    Google Scholar 

  • Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192

    PubMed  CAS  Google Scholar 

  • Buschman E, Skamene E (2004) Linkage of leprosy susceptibility to Parkinson’s disease genes. Int J Lepr Other Mycobact Dis 72:169–170

    Article  PubMed  Google Scholar 

  • Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A (2008) Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol 167:90–95

    Article  PubMed  Google Scholar 

  • Cookson MR (2010) The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci 11:791–797

    Article  PubMed  CAS  Google Scholar 

  • Cullen V, Lindfors M, Ng J, Paetau A, Swinton E, Kolodziej P, Boston H, Saftig P, Woulfe J, Feany MB, Myllykangas L, Schlossmacher MG, Tyynelä J (2009) Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo. Mol Brain. doi:10.1186/1756-6606-2-5

  • Cullen V, Sardi SP, Ng J, Xu YH, Sun Y, Tomlinson JJ, Kolodziej P, Kahn I, Saftig P, Woulfe J, Rochet JC, Glicksman MA, Cheng SH, Grabowski GA, Shihabuddin LS, Schlossmacher MG (2011) Acid β-glucosidase mutants linked to gaucher disease, parkinson disease, and lewy body dementia alter α-synuclein processing. Ann Neurol. doi:10.1002/ana.22400

  • Danoy P, Pryce K, Hadler J, Bradbury LA, Farrar C, Pointon J, Australo-Anglo-American Spondyloarthritis Consortium, Ward M, Weisman M, Reveille JD, Wordsworth BP, Stone MA, Spondyloarthritis Research Consortium of Canada, Maksymowych WP, Rahman P, Gladman D, Inman RD, Brown MA (2010) Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLoS Genet 6:e1001195

    Article  PubMed  Google Scholar 

  • Galter D, Westerlund M, Carmine A, Lindqvist E, Sydow O, Olson L (2006) LRRK2 expression linked to dopamine-innervated areas. Ann Neurol 59:714–719

    Article  PubMed  CAS  Google Scholar 

  • Gardet A, Benita Y, Li C, Sands BE, Ballester I, Stevens C, Korzenik JR, Rioux JD, Daly MJ, Xavier RJ, Podolsky DK (2010) LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol 185:5577–5585

    Article  PubMed  CAS  Google Scholar 

  • Goldwurm S, Zini M, Mariani L, Tesei S, Miceli R, Sironi F, Clementi M, Bonifati V, Pezzoli G (2007) Evaluation of LRRK2 G2019S penetrance: relevance for genetic counseling in Parkinson disease. Neurology 68:1141–1143

    Google Scholar 

  • Greggio E, Cookson MR (2009) Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: three questions. ASN Neuro 1:13–24

    Google Scholar 

  • Grimes DA, Racacho L, Han F, Panisset M, Bulman DE (2007) LRRK2 screening in a Canadian Parkinson’s disease cohort. Can J Neurol Sci 34:336–338

    PubMed  CAS  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (2011) Changing concepts in Parkinson’s disease. Lancet Neurol 10:307

    Google Scholar 

  • Klein C, Schlossmacher MG (2007) Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder. Neurology 69:2093–2104

    Article  PubMed  Google Scholar 

  • Klein C, Krainc D, Schlossmacher MG, Lang AE (2011) Translational Research in Neurology and Neuroscience 2011: movement Disorders. Arch Neurol. doi:10.1001/archneurol.2011.11

  • Kubo M, Kamiya Y, Nagashima R, Maekawa T, Eshima K, Azuma S, Ohta E, Obata F (2010) LRRK2 is expressed in B-2 but not in B-1 B cells, and downregulated by cellular activation. J Neuroimmunol 229:123–128

    Article  PubMed  CAS  Google Scholar 

  • Lamkanfi M, Dixit VM (2010) Manipulation of host cell death pathways during microbial infections. Cell Host Microb 8:44–54

    Article  CAS  Google Scholar 

  • Le Bourhis L, Magalhaes JG, Selvanantham T, Travassos LH, Geddes K, Fritz JH, Viala J, Tedin K, Girardin SE, Philpott DJ (2009) Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1-independent Salmonella enterica serovar Typhimurium infection. Infect Immun 77:4480–4486

    Article  PubMed  CAS  Google Scholar 

  • Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, Eckmann L, Karin M (2005) NOD2 mutation in Crohn’s disease potentiates NF-κB activity and IL-1β processing. Science 307:734–738

    Article  PubMed  CAS  Google Scholar 

  • Maekawa T, Kubo M, Yokoyama I, Ohta E, Obata F (2010) Age-dependent and cell-population-restricted LRRK2 expression in normal mouse spleen. Biochem Biophys Res Commun 392:431–435

    Article  PubMed  CAS  Google Scholar 

  • Marín I (2006) The Parkinson disease gene LRRK2: evolutionary and structural insights. Mol Biol Evol 23:2423–2433

    Article  PubMed  Google Scholar 

  • Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA (2006) LRRK2 in Parkinson’s disease: protein domains and functional insights. Trends Neurosci 29:286–293

    Article  PubMed  CAS  Google Scholar 

  • Melrose H (2008) Update on the functional biology of Lrrk2. Future Neurol 3:669–681

    Article  PubMed  CAS  Google Scholar 

  • Miklossy J, Arai T, Guo JP, Klegeris A, Yu S, McGeer EG, McGeer PL (2006) LRRK2 expression in normal and pathologic human brain and in human cell lines. J Neuropathol Exp Neurol 65:953–963

    Article  PubMed  CAS  Google Scholar 

  • Mount MP, Lira A, Grimes D, Smith PD, Faucher S, Slack R, Anisman H, Hayley S, Park DS (2007) Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J Neurosci 27:3328–3337

    Article  PubMed  CAS  Google Scholar 

  • Mutez E, Larvor L, Leprêtre F, Mouroux V, Hamalek D, Kerckaert JP, Pérez-Tur J, Waucquier N, Vanbesien-Mailliot C, Duflot A, Devos D, Defebvre L, Kreisler A, Frigard B, Destée A, Chartier-Harlin MC (2010) Transcriptional profile of Parkinson blood mononuclear cells with LRRK2 mutation. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2009.10.016

  • Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinen L, Lachmann RH, Li A, Holton J, Guerreiro R, Paudel R, Segarane B, Singleton A, Lees A, Hardy J, Houlden H, Revesz T, Wood NW (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132:1783–1794

    Article  PubMed  Google Scholar 

  • Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nuñez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606

    Article  PubMed  CAS  Google Scholar 

  • Ozelius LJ, Senthil G, Saunders-Pullman R, Ohmann E, Deligtisch A, Tagliati M, Hunt AL, Klein C, Henick B, Hailpern SM, Lipton RB, Soto-Valencia J, Risch N, Bressman SB (2006) LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. N Engl J Med 354:424–425

    Google Scholar 

  • Reale M, Greig NH, Kamal MA (2009) Peripheral chemo-cytokine profiles in Alzheimer’s and Parkinson’s diseases. Mini Rev Med Chem 9:1229–1241

    Article  PubMed  CAS  Google Scholar 

  • Saïd-Sadier N, Padilla E, Langsley G, Ojcius DM (2010) Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One 5:e10008

    Article  PubMed  Google Scholar 

  • Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B, Eklund AC, Ney PA, Ng J, McGoldrick M, Mollenhauer B, Bresnick EH, Schlossmacher MG (2008) GATA transcription factors directly regulate the Parkinson's disease-linked gene alpha-synuclein. Proc Natl Acad Sci USA. 105:10907–10912

    Google Scholar 

  • Schlossmacher MG, Shimura H (2005) Parkinson’s disease: assays for the ubiquitin ligase activity of neural Parkin. Methods Mol Biol 301:351–369

    PubMed  CAS  Google Scholar 

  • Schlossmacher MG, Frosch MP, Gai WP, Medina M, Sharma N, Forno L, Ochiishi T, Shimura H, Sharon R, Hattori N, Langston JW, Mizuno Y, Hyman BT, Selkoe DJ, Kosik KS (2002) Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am J Pathol 160:1655–1667

    Article  PubMed  CAS  Google Scholar 

  • Schurr E, Gros P (2009) A common genetic fingerprint in leprosy and Crohn’s disease. N Engl J Med 361:2666–2668

    Article  PubMed  CAS  Google Scholar 

  • Schurr E, Alcaïs A, de Léséleuc L, Abel L (2006) Genetic predisposition to leprosy: a major gene reveals novel pathways of immunity to Mycobacterium leprae. Semin Immunol 18:404–410

    Article  PubMed  CAS  Google Scholar 

  • Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Krüger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, Gwinn K, van der Brug M, Lopez G, Chanock SJ, Schatzkin A, Park Y, Hollenbeck A, Gao J, Huang X, Wood NW, Lorenz D, Deuschl G, Chen H, Riess O, Hardy JA, Singleton AB, Gasser T (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41:1308–1312

    Article  PubMed  Google Scholar 

  • Stockton JC, Howson JM, Awomoyi AA, McAdam KP, Blackwell JM, Newport MJ (2004) Polymorphism in NOD2, Crohn’s disease, and susceptibility to pulmonary tuberculosis. FEMS Immunol Med Microbiol 41:157–160

    Article  PubMed  CAS  Google Scholar 

  • Takken FL, Tameling WI (2009) To nibble at plant resistance proteins. Science 324:744–746

    Article  PubMed  CAS  Google Scholar 

  • Taxman DJ, Huang MT, Ting JP (2010) Inflammasome inhibition as a pathogenic stealth mechanism. Cell Host Microbe 8:7–11

    Article  PubMed  CAS  Google Scholar 

  • Taylor JP, Mata IF, Farrer MJ (2006) LRRK2: a common pathway for parkinsonism, pathogenesis and prevention? Trends Mol Med 12:76–82

    Article  PubMed  CAS  Google Scholar 

  • Tong Y, Shen J (2009) Alpha-synuclein and LRRK2: partners in crime. Neuron 64:771–773

    Article  PubMed  CAS  Google Scholar 

  • Tong Y, Pisani A, Martella G, Karouani M, Yamaguchi H, Pothos EN, Shen J (2009) R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proc Natl Acad Sci USA 106:14622–14627

    Article  PubMed  CAS  Google Scholar 

  • Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ 3rd, Shen J (2010) Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci USA 107:9879–9884

    Article  PubMed  CAS  Google Scholar 

  • Travassos LH, Girardin SE, Philpott DJ, Blanot D, Nahori MA, Werts C, Boneca IG (2004) Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Rep 5:1000–1006

    Article  PubMed  CAS  Google Scholar 

  • Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhães JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nuñez G, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11:55–62

    Article  PubMed  CAS  Google Scholar 

  • Van Limbergen J, Wilson DC, Satsangi J (2009) The genetics of Crohn’s disease. Annu Rev Genomics Hum Genet 10:89–116

    Article  PubMed  Google Scholar 

  • Venderova K, Kabbach G, Abdel-Messih E, Zhang Y, Parks RJ, Imai Y, Gehrke S, Ngsee J, Lavoie MJ, Slack RS, Rao Y, Zhang Z, Lu B, Haque ME, Park DS (2009) Leucine-rich repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease. Hum Mol Genet 18:4390–4404

    Article  PubMed  CAS  Google Scholar 

  • Vranjkovic A, Crawley AM, Patey A, Angel JB (2011) IL-7-dependent STAT-5 activation and CD8+ T cell proliferation are impaired in HIV infection. J Leukoc Biol 89:499–506

    Article  PubMed  CAS  Google Scholar 

  • Werts C, le Bourhis L, Liu J, Magalhaes JG, Carneiro LA, Fritz JH, Stockinger S, Balloy V, Chignard M, Decker T, Philpott DJ, Ma X, Girardin SE (2007) Nod1 and Nod2 induce CCL5/RANTES through the NF-κB pathway. Eur J Immuno 37:2499–2508

    Article  CAS  Google Scholar 

  • West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 102:16842–16847

    Article  PubMed  CAS  Google Scholar 

  • Wider C, Dickson DW, Wszolek ZK (2010) Leucine-rich repeat kinase 2 gene-associated disease: redefining genotype-phenotype correlation. Neurodegener Dis 7:175–179

    Article  PubMed  CAS  Google Scholar 

  • Zhang FR, Huang W, Chen SM, Sun LD, Liu H, Li Y, Cui Y, Yan XX, Yang HT, Yang RD, Chu TS, Zhang C, Zhang L, Han JW, Yu GQ, Quan C, Yu YX, Zhang Z, Shi BQ, Zhang LH, Cheng H, Wang CY, Lin Y, Zheng HF, Fu XA, Zuo XB, Wang Q, Long H, Sun YP, Cheng YL, Tian HQ, Zhou FS, Liu HX, Lu WS, He SM, Du WL, Shen M, Jin QY, Wang Y, Low HQ, Erwin T, Yang NH, Li JY, Zhao X, Jiao YL, Mao LG, Yin G, Jiang ZX, Wang XD, Yu JP, Hu ZH, Gong CH, Liu YQ, Liu RY, Wang DM, Wei D, Liu JX, Cao WK, Cao HZ, Li YP, Yan WG, Wei SY, Wang KJ, Hibberd ML, Yang S, Zhang XJ, Liu JJ (2009) Genomewide association study of leprosy. N Engl J Med 361:2609–2618

    Article  PubMed  CAS  Google Scholar 

  • Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Müller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This manuscript was contributed in honor of Dr. Kurt A. Jellinger’s 80th birthday and his distinguished career. We thank the editor for its solicitation. This work was supported by grants from the Government of Canada [Canada Research Chair Program (to M.G.S.)], the Michael J. Fox Foundation for Parkinson’s Research [LRRK2 Award; Supplementary LRRK2 Award (to D.S.P., J.S., M.G.S.)], the Parkinson Research Consortium Ottawa (to D.S.P., M.G.S.) and the National Institutes of Health (NIH grant R01NS064155 to C.R.S.). We are grateful for critical comments by Drs. D. Galter, W. Schulz-Schaeffer, S. Hayley, and J. Ngsee and for the assistance of Dr. I. Irrcher, Dr. J. Woulfe, A. Given and E. Abdel-Messih. Dr. K. Venderova is now at the University of the Pacific, Stockton, CA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Schlossmacher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

702_2011_653_MOESM1_ESM.pdf

Supplementary material 1 (PDF 234 kb) Supplementary Figure 1: LRRK2 mRNA and protein detection in EBV-transformed lymphoblasts and peripheral blood mononuclear cells. (A–D) Reducing SDS/PAGE was carried out using lysates of Ficoll-separated peripheral blood mononuclear cells (PBMC) from one human control donor (lane 3), followed by Western blotting with four different monoclonal rabbit anti-Lrrk2 antibodies (provided by the Michael J Fox Foundation, MJFF; see Materials and Methods), as indicated. Transgenic flies expressing full-length human LRRK2 cDNA (tg; lane 1) and their control littermates (wt; lane 2) were used as positive and negative controls, respectively. Note, the specific detection of full-length Lrrk2 (260 kDa), and higher molecular weight (HMW) species thereof in PBMC lysates, as well as of HMW Lrrk2 reactivity in tg fly homogenates. Membranes were stripped and redeveloped with anti-β-actin antibody (lower panels). (E) LRRK2, GAPDH transcripts and 18S RNA isolated from EBV-transformed lymphoblasts from a healthy donor were processed by reverse transcriptase and PCR to generate distinct amplification products, as indicated (for primer pairs, see Materials and Methods).

702_2011_653_MOESM2_ESM.pdf

Supplementary material 2 (PDF 156 kb) Supplementary Figure 2: Murine Lrrk2 expression in cells from immune organs and exploration of its role in cytokine release by genotyped macrophages. (A) FACS-based quantification of lrrk2-positive immune cells isolated from homogenates of spleen and mesenteric lymph nodes of wild-type mice (n = 3) as described (Werts et al. 2007). Note, among four distinct leukocyte populations sorted, neutrophils revealed the strongest signal for lrrk2 reactivity (see also Discussion). Lrrk2 expression was measured by FACS analysis using anti-Lrrk2 antibody MJFF-4 on B220+ B-cells, TCRβ+ T-cells, CD11b+/CD11c+ macrophages, Gr-1+ neutrophils, and CD11c+ dendritic cells. (B) Lrrk2-genotype dependent cytokine signaling following exposure to different stimulants was explored by probing IL-6 and KC release by ELISA (Werts et al. 2007) from cultured BMDM. Cells were isolated from R1441C lrrk2 knock-in (KI) mice, heterozygous (HET) animals, and age-matched wild-type (WT) littermates (12 weeks old, n = 2 each; supernatants were analyzed in quadruplicates). Note, no consistent lrrk2 genotype-associated effect (WT vs. HET / KI) was detected in the conditioned media of BMDM cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakimi, M., Selvanantham, T., Swinton, E. et al. Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J Neural Transm 118, 795–808 (2011). https://doi.org/10.1007/s00702-011-0653-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0653-2

Keywords

Navigation