Skip to main content

Advertisement

Log in

HIV-2 A-subtype gp125C2-V3-C3 mutations and their association with CCR5 and CXCR4 tropism

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The early events of the HIV replication cycle involve the interaction between viral envelope glycoproteins and their cellular CD4-chemokine (CCR5/CXCR4) receptor complex. In this study, for the first time, the HIV-2 A-subtype gp125C2-V3-C3 mutations and their tropism association were characterized by analyzing 149 HIV-2 sequences from the Los Alamos database. The analysis has strengthened the importance of C2-V3-C3 region as a determinant factor for co-receptor selection. Moreover, statistically significant correlations were observed between C2-V3-C3 mutations, and several correlated mutations were associated with CXCR4 and CCR5 co-receptor usage. A dendrogram showed two distinct clusters, with numerous associated mutations grouped, thus dividing CCR5- and CXCR4-tropic viruses. Fourteen X4-tropic virus mutations, all in V3 and C3 domains and forming highly significant subclusters, were found. Finally, R5 associations, two strong subclusters were observed, grouping several C2-V3-C3 mutated positions. These data indicate the possible contribution of C2-V3-C3 mutational patterns in regulating HIV-2 tropism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barin F, Goudeau A, Romet-Lemonne JL, Choutet P, Chassaigne M (1985) Virus carriage in symptom-free blood donor positive for HTLV-III antibody. Lancet 2:98

    Article  PubMed  CAS  Google Scholar 

  2. Clavel F, Guetard D, Brun-Vezinet F, Chamaret S, Rey MA, Santos-Ferreira MO, Laurent AG, Dauguet C, Katlama C, Rouzioux C (1986) Isolation of a new human retrovirus from West African patients with AIDS. Science 233:343–346

    Article  PubMed  CAS  Google Scholar 

  3. Pepin J, Morgan G, Dunn D, Gevao S, Mendy M, Gaye I, Scollen N, Tedder R, Whittle H (1991) HIV-2-induced immunosuppression among asymptomatic West African prostitutes: evidence that HIV-2 is pathogenic, but less so than HIV-1. AIDS 5:1165–1172

    Article  PubMed  CAS  Google Scholar 

  4. Markovitz DM (1993) Infection with the human immunodeficiency virus type 2. Ann Intern Med 118:211–218

    PubMed  CAS  Google Scholar 

  5. Berry N, Ariyoshi K, Jaffar S, Sabally S, Corrah T, Tedder R, Whittle H (1998) Low peripheral blood viral HIV-2 RNA in individuals with high CD4 percentage differentiates HIV-2 from HIV-1 infection. J Hum Virol 1:457–468

    PubMed  CAS  Google Scholar 

  6. Soares R, Foxall R, Albuquerque A, Cortesao C, Garcia M, Victorino RM, Sousa AE (2006) Increased frequency of circulating CCR5+ CD4+ T cells in human immunodeficiency virus type 2 infection. J Virol 80:12425–12429

    Article  PubMed  CAS  Google Scholar 

  7. Anderson DE, Llenado RA, Torres JV (2004) Humoral immunity and the evolution of HIV-2. Viral Immunol 17:436–439

    Article  PubMed  CAS  Google Scholar 

  8. Berry N, Jaffar S, Schim van der Loeff M, Ariyoshi K, Harding E, N’Gom PT, Dias F, Wilkins A, Ricard D, Aaby P, Tedder R, Whittle H (2002) Low level viremia and high CD4% predict normal survival in a cohort of HIV type-2-infected villagers. AIDS Res Hum Retrovirus 18:1167–1173

    Article  Google Scholar 

  9. MacNeil A, Sarr AD, Sankale JL, Meloni ST, Mboup S, Kanki P (2007) Direct evidence of lower viral replication rates in vivo in human immunodeficiency virus type 2 (HIV-2) infection than in HIV-1 infection. J Virol 81:5325–5330

    Article  PubMed  CAS  Google Scholar 

  10. Lizeng Q, Nilsson C, Sourial S, Andersson S, Larsen O, Aaby P, Ehnlund M, Bjorling E (2004) Potent neutralizing serum immunoglobulin A (IgA) in human immunodeficiency virus type 2-exposed IgG-seronegative individuals. J Virol 78:7016–7022

    Article  PubMed  CAS  Google Scholar 

  11. Blaak H, Brouwer M, Ran LJ, de Wolf F, Schuitemaker H (1998) In vitro replication kinetics of human immunodeficiency virus type 1 (HIV-1) variants in relation to virus load in long-term survivors of HIV-1 infection. J Infect Dis 177:600–610

    Article  PubMed  CAS  Google Scholar 

  12. Duvall MG, Precopio ML, Ambrozak DA, Jaye A, McMichael AJ, Whittle HC, Roederer M, Rowland-Jones SL, Koup RA (2008) Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol 38:350–363

    Article  PubMed  CAS  Google Scholar 

  13. Hamel DJ, Sankale JL, Eisen G, Meloni ST, Mullins C, Gueye-Ndiaye A, Mboup S, Kanki PJ (2007) Twenty years of prospective molecular epidemiology in Senegal: changes in HIV diversity. AIDS Res Hum Retrovirus 23:1189–1196

    Article  CAS  Google Scholar 

  14. van der Loeff MF, Awasana AA, Sarge-Njie R, van der Sande M, Jaye A, Sabally S, Corrah T, McConkey SJ, Whittle HC (2006) Sixteen years of HIV surveillance in a West African research clinic reveals divergent epidemic trends of HIV-1 and HIV-2. Int J Epidemiol 35:1322–1328

    Article  PubMed  Google Scholar 

  15. Campbell-Yesufu OT, Gandhi RT (2011) Update on human immunodeficiency virus (HIV)-2 infection. Clin Infect Dis 52:780–787

    Article  PubMed  Google Scholar 

  16. Rowland-Jones S (2006) Protective immunity against HIV infection: lessons from HIV-2 infection. Futur Microbiol 1:427–433

    Article  CAS  Google Scholar 

  17. Hoxie JA, Haggarty BS, Bonser SE, Rackowski JL, Shan H, Kanki PJ (1988) Biological characterization of a simian immunodeficiency virus-like retrovirus (HTLV-IV): evidence for CD4-associated molecules required for infection. J Virol 62:2557–2568

    PubMed  CAS  Google Scholar 

  18. Sattentau QJ, Clapham PR, Weiss RA, Beverley PC, Montagnier L, Alhalabi MF, Gluckmann JC, Klatzmann D (1988) The human and simian immunodeficiency viruses HIV-1, HIV-2 and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS 2:101–105

    Article  PubMed  CAS  Google Scholar 

  19. Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273

    Article  PubMed  CAS  Google Scholar 

  20. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430

    Article  PubMed  CAS  Google Scholar 

  21. Farzan M, Choe H, Desjardins E, Sun Y, Kuhn J, Cao J, Archambault D, Kolchinsky P, Koch M, Wyatt R, Sodroski J (1998) Stabilization of human immunodeficiency virus type 1 envelope glycoprotein trimers by disulfide bonds introduced into the gp41 glycoprotein ectodomain. J Virol 72:7620–7625

    PubMed  CAS  Google Scholar 

  22. Zhu P, Chertova E, Bess J Jr, Lifson JD, Arthur LO, Liu J, Taylor KA, Roux KH (2003) Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc Natl Acad Sci USA 100:15812–15817

    Article  PubMed  CAS  Google Scholar 

  23. Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280:1884–1888

    Article  PubMed  CAS  Google Scholar 

  24. Jadhav S, Tripathy S, Kulkarni S, Chaturbhuj D, Ghare R, Bhattacharya J, Paranjape R (2011) Genetic conservation in gp36 transmembrane sequences of Indian HIV type 2 isolates. AIDS Res Hum Retrovirus

  25. Helseth E, Olshevsky U, Furman C, Sodroski J (1991) Human immunodeficiency virus type 1 gp120 envelope glycoprotein regions important for association with the gp41 transmembrane glycoprotein. J Virol 65:2119–2123

    PubMed  CAS  Google Scholar 

  26. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673

    Article  PubMed  CAS  Google Scholar 

  27. Eckert DM, Kim PS (2001) Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 70:777–810

    Article  PubMed  CAS  Google Scholar 

  28. Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA, Sodroski JG (1998) The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393:705–711

    Article  PubMed  CAS  Google Scholar 

  29. Hwang SS, Boyle TJ, Lyerly HK, Cullen BR (1991) Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253:71–74

    Article  PubMed  CAS  Google Scholar 

  30. Krachmarov CP, Honnen WJ, Kayman SC, Gorny MK, Zolla-Pazner S, Pinter A (2006) Factors determining the breadth and potency of neutralization by V3-specific human monoclonal antibodies derived from subjects infected with clade A or clade B strains of human immunodeficiency virus type 1. J Virol 80:7127–7135

    Article  PubMed  CAS  Google Scholar 

  31. Forsell MN, Schief WR, Wyatt RT (2009) Immunogenicity of HIV-1 envelope glycoprotein oligomers. Curr Opin HIV AIDS 4:380–387

    Article  PubMed  Google Scholar 

  32. Blaak H, Boers PH, Gruters RA, Schuitemaker H, van der Ende ME, Osterhaus AD (2005) CCR5, GPR15, and CXCR6 are major coreceptors of human immunodeficiency virus type 2 variants isolated from individuals with and without plasma viremia. J Virol 79:1686–1700

    Article  PubMed  CAS  Google Scholar 

  33. Morner A, Bjorndal A, Leandersson AC, Albert J, Bjorling E, Jansson M (2002) CCR5 or CXCR4 is required for efficient infection of peripheral blood mononuclear cells by promiscuous human immunodeficiency virus type 2 primary isolates. AIDS Res Hum Retrovirus 18:193–200

    Article  CAS  Google Scholar 

  34. Clapham PR, McKnight A, Weiss RA (1992) Human immunodeficiency virus type 2 infection and fusion of CD4-negative human cell lines: induction and enhancement by soluble CD4. J Virol 66:3531–3537

    PubMed  CAS  Google Scholar 

  35. Reeves JD, Hibbitts S, Simmons G, McKnight A, Azevedo-Pereira JM, Moniz-Pereira J, Clapham PR (1999) Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo. J Virol 73:7795–7804

    PubMed  CAS  Google Scholar 

  36. Gallo SA, Sackett K, Rawat SS, Shai Y, Blumenthal R (2004) The stability of the intact envelope glycoproteins is a major determinant of sensitivity of HIV/SIV to peptidic fusion inhibitors. J Mol Biol 340:9–14

    Article  PubMed  CAS  Google Scholar 

  37. Blumenthal R, Clague MJ, Durell SR, Epand RM (2003) Membrane fusion. Chem Rev 103:53–69

    Article  PubMed  CAS  Google Scholar 

  38. Bjorling E, Chiodi F, Utter G, Norrby E (1994) Two neutralizing domains in the V3 region in the envelope glycoprotein gp125 of HIV type 2. J Immunol 152:1952–1959

    PubMed  CAS  Google Scholar 

  39. Morner A, Achour A, Norin M, Thorstensson R, Bjorling E (1999) Fine characterization of a V3-region neutralizing epitope in human immunodeficiency virus type 2. Virus Res 59:49–60

    Article  PubMed  CAS  Google Scholar 

  40. Marcelino JM, Borrego P, Rocha C, Barroso H, Quintas A, Novo C, Taveira N (2010) Potent and broadly reactive HIV-2 neutralizing antibodies elicited by a vaccinia virus vector prime-C2V3C3 polypeptide boost immunization strategy. J Virol 84:12429–12436

    Article  PubMed  CAS  Google Scholar 

  41. Barroso H, Borrego P, Bartolo I, Marcelino JM, Familia C, Quintas A, Taveira N (2011) Evolutionary and structural features of the C2, V3 and C3 envelope regions underlying the differences in HIV-1 and HIV-2 biology and infection. PLoS ONE 6:e14548

    Article  PubMed  CAS  Google Scholar 

  42. de Wolf F, Meloen RH, Bakker M, Barin F, Goudsmit J (1991) Characterization of human antibody-binding sites on the external envelope of human immunodeficiency virus type 2. J Gen Virol 72(Pt 6):1261–1267

    Article  PubMed  Google Scholar 

  43. Gnann JW Jr, McCormick JB, Mitchell S, Nelson JA, Oldstone MB (1987) Synthetic peptide immunoassay distinguishes HIV type 1 and HIV type 2 infections. Science 237:1346–1349

    Article  PubMed  CAS  Google Scholar 

  44. Huang ML, Essex M, Lee TH (1991) Localization of immunogenic domains in the human immunodeficiency virus type 2 envelope. J Virol 65:5073–5079

    PubMed  CAS  Google Scholar 

  45. Lizeng Q, Skott P, Sourial S, Nilsson C, Andersson SS, Ehnlund M, Taveira N, Bjorling E (2003) Serum immunoglobulin A (IgA)-mediated immunity in human immunodeficiency virus type 2 (HIV-2) infection. Virology 308:225–232

    Article  PubMed  Google Scholar 

  46. Mannervik M, Putkonen P, Ruden U, Kent KA, Norrby E, Wahren B, Broliden PA (1992) Identification of B-cell antigenic sites on HIV-2 gp125. J Acquir Immune Defic Syndr 5:177–187

    PubMed  CAS  Google Scholar 

  47. Norrby E, Putkonen P, Bottiger B, Utter G, Biberfeld G (1991) Comparison of linear antigenic sites in the envelope proteins of human immunodeficiency virus (HIV) type 2 and type 1. AIDS Res Hum Retrovirus 7:279–285

    Article  CAS  Google Scholar 

  48. Schulz TF, Oberhuber W, Hofbauer JM, Hengster P, Larcher C, Gurtler LC, Tedder R, Wachter H, Dierich MP (1989) Recombinant peptides derived from the env-gene of HIV-2 in the serodiagnosis of HIV-2 infections. AIDS 3:165–172

    Article  PubMed  CAS  Google Scholar 

  49. Zuber M, Samuel KP, Lautenberger JA, Kanki PJ, Papas TS (1990) Bacterially produced HIV-2 env polypeptides specific for distinguishing HIV-2 from HIV-1 infections. AIDS Res Hum Retrovirus 6:525–534

    Article  CAS  Google Scholar 

  50. Marcelino JM, Nilsson C, Barroso H, Gomes P, Borrego P, Maltez F, Rosado L, Doroana M, Antunes F, Taveira N (2008) Envelope-specific antibody response in HIV-2 infection: C2V3C3-specific IgG response is associated with disease progression. AIDS 22:2257–2265

    Article  PubMed  CAS  Google Scholar 

  51. Fouchier RA, Groenink M, Kootstra NA, Tersmette M, Huisman HG, Miedema F, Schuitemaker H (1992) Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. J Virol 66:3183–3187

    PubMed  CAS  Google Scholar 

  52. Nabatov AA, Pollakis G, Linnemann T, Kliphius A, Chalaby MI, Paxton WA (2004) Intrapatient alterations in the human immunodeficiency virus type 1 gp120 V1V2 and V3 regions differentially modulate coreceptor usage, virus inhibition by CC/CXC chemokines, soluble CD4, and the b12 and 2G12 monoclonal antibodies. J Virol 78:524–530

    Article  PubMed  CAS  Google Scholar 

  53. Pollakis G, Kang S, Kliphuis A, Chalaby MI, Goudsmit J, Paxton WA (2001) N-linked glycosylation of the HIV type-1 gp120 envelope glycoprotein as a major determinant of CCR5 and CXCR4 coreceptor utilization. J Biol Chem 276:13433–13441

    Article  PubMed  CAS  Google Scholar 

  54. Shi Y, Brandin E, Vincic E, Jansson M, Blaxhult A, Gyllensten K, Moberg L, Brostrom C, Fenyo EM, Albert J (2005) Evolution of human immunodeficiency virus type 2 coreceptor usage, autologous neutralization, envelope sequence and glycosylation. J Gen Virol 86:3385–3396

    Article  PubMed  CAS  Google Scholar 

  55. Taveira NC, Bex F, Burny A, Robertson D, Ferreira MO, Moniz-Pereira J (1994) Molecular characterization of the env gene from a non-syncytium-inducing HIV-2 isolate (HIV-2ALI). AIDS Res Hum Retrovirus 10:223–224

    Article  CAS  Google Scholar 

  56. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  57. Hall TA (1979) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    Google Scholar 

  58. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  59. Dimonte S, Mercurio F, Svicher V, D’Arrigo R, Perno CF, Ceccherini-Silberstein F (2011) Selected amino acid mutations in HIV-1 B subtype gp41 are Associated with Specific gp120V3 signatures in the regulation of co-receptor usage. Retrovirology 8:33

    Article  PubMed  CAS  Google Scholar 

  60. Svicher V, Aquaro S, D’Arrigo R, Artese A, Dimonte S, Alcaro S, Santoro MM, Di PG, Caputo SL, Bellagamba R, Zaccarelli M, Visco-Comandini U, Antinori A, Narciso P, Ceccherini-Silberstein F, Perno CF (2008) Specific enfuvirtide-associated mutational pathways in HIV-1 Gp41 are significantly correlated with an increase in CD4(+) cell count, despite virological failure. J Infect Dis 197:1408–1418

    Article  PubMed  CAS  Google Scholar 

  61. Svicher V, Alteri C, D’Arrigo R, Lagana A, Trignetti M, Lo CS, Callegaro AP, Maggiolo F, Mazzotta F, Ferro A, Dimonte S, Aquaro S, Di PG, Bonora S, Tommasi C, Trotta MP, Narciso P, Antinori A, Perno CF, Ceccherini-Silberstein F (2009) Treatment with the fusion inhibitor enfuvirtide influences the appearance of mutations in the human immunodeficiency virus type 1 regulatory protein rev. Antimicrob Agents Chemother 53:2816–2823

    Article  PubMed  CAS  Google Scholar 

  62. Larrouy L, Lambert-Niclot S, Charpentier C, Fourati S, Visseaux B, Soulie C, Wirden M, Katlama C, Yeni P, Brun-Vezinet F, Calvez V, Marcelin AG, Descamps D (2011) Positive impact of HIV-1 gag cleavage site mutations on the virological response to darunavir boosted with ritonavir. Antimicrob Agents Chemother 55:1754–1757

    Article  PubMed  Google Scholar 

  63. Leal E, Janini M, Diaz RS (2007) Selective pressures of human immunodeficiency virus type 1 (HIV-1) during pediatric infection. Infect Genet Evol 7:694–707

    Article  PubMed  CAS  Google Scholar 

  64. Lemey P, Kosakovsky Pond SL, Drummond AJ, Pybus OG, Shapiro B, Barroso H, Taveira N, Rambaut A (2007) Synonymous substitution rates predict HIV disease progression as a result of underlying replication dynamics. PLoS Comput Biol 3:e29

    Article  PubMed  Google Scholar 

  65. Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D, Farzadegan H, Gupta P, Rinaldo CR, Learn GH, He X, Huang XL, Mullins JI (1999) Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 73:10489–10502

    PubMed  CAS  Google Scholar 

  66. Yang W, Bielawski JP, Yang Z (2003) Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J Mol Evol 57:212–221

    Article  PubMed  CAS  Google Scholar 

  67. Isaka Y, Sato A, Miki S, Kawauchi S, Sakaida H, Hori T, Uchiyama T, Adachi A, Hayami M, Fujiwara T, Yoshie O (1999) Small amino acid changes in the V3 loop of human immunodeficiency virus type 2 determines the coreceptor usage for CXCR4 and CCR5. Virology 264:237–243

    Article  PubMed  CAS  Google Scholar 

  68. Santos-Costa Q, Parreira R, Moniz-Pereira J, Azevedo-Pereira JM (2009) Molecular characterization of the env gene of two CCR5/CXCR4-independent human immunodeficiency 2 primary isolates. J Med Virol 81:1869–1881

    Article  PubMed  CAS  Google Scholar 

  69. Santos-Costa Q, Mansinho K, Moniz-Pereira J, Azevedo-Pereira JM (2009) Characterization of HIV-2 chimeric viruses unable to use CCR5 and CXCR4 coreceptors. Virus Res 142:41–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the Italian Ministry of Instruction University & Research (MIUR), “Progetto FILAS”, and by the European Commission Framework 7 Programme (CHAIN, the Collaborative HIV and Anti-HIV Drug Resistance Network, Integrated Project no. 223131). We are thankful for Amalia Mastrofrancesco, Marzia Romani and Fabio Mercurio for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Babakir-Mina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2011_1075_MOESM1_ESM.pdf

Novel gp125 C2-V3-C3 mutations significantly associated with each other. aThe frequency was determined for 149 samples from HIV-2-infected patients, all with pure phenotype and/or co-receptor determinations known. bThe frequency was determined for 38 HIV-2 samples, all reported with pure X4-phenotype and/or co-receptor determinations. cPercentages were calculated for patients with each specific gp125 C3 or V3 mutation. dPositive and negative correlations with φ > 0.2 and φ < -0.2, respectively, are shown. e P values significant (P < 0.05) after correction for multiple hypothesis testing [58]. (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimonte, S., Svicher, V., Salpini, R. et al. HIV-2 A-subtype gp125C2-V3-C3 mutations and their association with CCR5 and CXCR4 tropism. Arch Virol 156, 1943–1951 (2011). https://doi.org/10.1007/s00705-011-1075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-1075-z

Keywords

Navigation