Skip to main content

Advertisement

Log in

Vaccinia virus infection suppresses the cell microRNA machinery

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

MicroRNAs are key players in the regulation of gene expression by posttranscriptional suppression. They are involved in physiological processes, and thus their deregulation may contribute to the development of diseases and progression of cancer. Virus-encoded microRNAs and microRNAs of host origin play an important role in controlling the virus life cycle and immunity. The aim of this study was to determine the effect of vaccinia virus (VACV) infection on the expression of host-encoded microRNAs. A marked general suppression of most microRNAs in the infected cells was observed within 24 hours after VACV infection of a number of cell types. We demonstrate that this suppression was associated with abrogation of expression of the Dicer1 enzyme, which is a key enzyme in the generation of microRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moss B (1996) Poxviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology, vol 3. Lippincott-Raven, New York, p 2637

    Google Scholar 

  2. Katsafanas GC, Moss B (2007) Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe. doi:10.1016/j.chom.2007.08.005

    PubMed  Google Scholar 

  3. Schramm B, Locker JK (2005) Cytoplasmic organization of POXvirus DNA replication. Traffic. doi:10.1111/j.1600-0854.2005.00324.x

    Google Scholar 

  4. Parrish S, Resch W, Moss B (2007) Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression. Proc Natl Acad Sci USA. doi:10.1073/pnas.0611685104

    Google Scholar 

  5. Parrish S, Moss B (2007) Characterization of a second vaccinia virus mRNA-decapping enzyme conserved in poxviruses. J Virol. doi:10.1128/JVI.01668-07

    Google Scholar 

  6. Boone RF, Parr RP, Moss B (1979) Intermolecular duplexes formed from polyadenylylated vaccinia virus RNA. J Virol 30:365–374

    PubMed  CAS  Google Scholar 

  7. Arsenio J, Deschambault Y, Cao J (2008) Antagonizing activity of vaccinia virus E3L against human interferons in Huh7 cells. Virology. doi:10.1016/j.virol.2008.04.014

    PubMed  Google Scholar 

  8. Carroll K, Elroy-Stein O, Moss B, Jagus R (1993) Recombinant vaccinia virus K3L gene product prevents activation of double-stranded RNA-dependent, initiation factor 2 alpha-specific protein kinase. J Biol Chem 268:12837–12842

    PubMed  CAS  Google Scholar 

  9. Chang HW, Watson JC, Jacobs BL (1992) The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci USA 89:4825–4829

    Article  PubMed  CAS  Google Scholar 

  10. Haga IR, Bowie AG (2005) Evasion of innate immunity by vaccinia virus. Parasitology. doi:10.1017/S0031182005008127

    PubMed  Google Scholar 

  11. Rivas C, Gil J, Melkova Z, Esteban M, Diaz-Guerra M (1998) Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.)-induced 2–5A synthetase enzyme. Virology 248:406–414

    Article  Google Scholar 

  12. Wang J, Xu R, Lin F, Zhang S, Zhang G, Hu S, Zheng Z (2008) MicroRNA: Novel Regulators Involved in the Remodeling and Reverse Remodeling of the Heart. Cardiology. doi:10.1159/000172616

    Google Scholar 

  13. Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene. doi:10.1038/onc.2008.274

    PubMed  Google Scholar 

  14. Chang J, Guo JT, Jiang D, Guo H, Taylor JM, Block TM (2008) Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol. doi:10.1128/JVI.02575-07

    Google Scholar 

  15. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. doi:10.1038/nrm1644

    Google Scholar 

  16. Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell. doi:10.1016/j.cell.2009.01.035

    Google Scholar 

  17. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. doi:10.1038/35005107

    Google Scholar 

  18. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  19. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR (2005) Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA. doi:10.1073/pnas.0408192102

    Google Scholar 

  20. Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, Raab-Traub N, Cullen BR (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. doi:10.1371/journal.ppat.0020023

    Google Scholar 

  21. Grey F, Nelson J (2008) Identification and function of human cytomegalovirus microRNAs. J Clin Virol. doi:10.1016/j.jcv.2007.11.024

    PubMed  Google Scholar 

  22. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science. doi:10.1126/science.1096781

    PubMed  Google Scholar 

  23. Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR (2009) Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol. doi:10.1128/JVI.01185-09

    Google Scholar 

  24. Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, Cardinaud B, Maurin T, Barbry P, Baillat V, Reynes J, Corbeau P, Jeang KT, Benkirane M (2007) Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science. doi:10.1126/science.1136319

    PubMed  Google Scholar 

  25. Aliyari R, Ding SW (2009) RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol Rev. doi:10.1111/j.1600-065X.2008.00722.x

    PubMed  Google Scholar 

  26. Obbard DJ, Gordon KH, Buck AH, Jiggins FM (2009) The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci. doi:10.1098/rstb.2008.0168

    PubMed  Google Scholar 

  27. van Rij RP, Berezikov E (2009) Small RNAs and the control of transposons and viruses in Drosophila. Trends Microbiol. doi:10.1016/j.tim.2009.01.003

    PubMed  Google Scholar 

  28. Otsuka M, Jing Q, Georgel P, New L, Chen J, Mols J, Kang YJ, Jiang Z, Du X, Cook R, Das SC, Pattnaik AK, Beutler B, Han J (2007) Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity. doi:10.1016/j.immuni.2007.05.014

    PubMed  Google Scholar 

  29. Ronen R, Gan I, Modai S, Sukacheov A, Dror G, Halperin E, Shomron N (2010) miRNAkey: a software for microRNA deep sequencing analysis. Bioinformatics. doi:10.1093/bioinformatics/btq493

    PubMed  Google Scholar 

  30. Lu S, Cullen BR (2004) Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol. doi:10.1128/JVI.78.23.12868-12876.2004

    Google Scholar 

  31. Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B, Akusjarvi G (2005) Suppression of RNA interference by adenovirus virus-associated RNA. J Virol. doi:10.1128/JVI.79.15.9556-9565.2005

    Google Scholar 

  32. Muller S, Imler JL (2007) Dicing with viruses: microRNAs as antiviral factors. Immunity. doi:10.1016/j.immuni.2007.07.003

    Google Scholar 

  33. Hikichi M, Kidokoro M, Haraguchi T, Iba H, Shida H, Tahara H, Nakamura T (2011) MicroRNA regulation of glycoprotein B5R in oncolytic vaccinia virus reduces viral pathogenicity without impairing its antitumor efficacy. Mol Ther. doi:10.1038/mt.2011.36

    PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Israel Science Foundation (grant no. 1375/05) and the Israel Ministry for Science, Culture, and Sport (grant no. 3-4435). The sponsor had no role in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonat Shemer-Avni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2012_1366_MOESM1_ESM.pptx

Supplementary material 1 (PPTX 55 kb)Supplemental Figure 1 Abrogation of Dicer1 in a variety of VACV-infected cells. HeLa, Vero and 293 cells were infected with VACV for 48 h (white bars) or mock-infected (black bars). Following infection, total RNA was extracted, and SYBR green RT-PCR was performed to measure transcription of Drosha (panel a) and Dicer1 (panel b) mRNAs. While Dicer1 expression was abolished in infected cells (panel b), there was no difference in Drosha expression in infected vs. uninfected cells (panel a). The average of the data from two experiments is shown

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinberg, M., Gilad, S., Meiri, E. et al. Vaccinia virus infection suppresses the cell microRNA machinery. Arch Virol 157, 1719–1727 (2012). https://doi.org/10.1007/s00705-012-1366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1366-z

Keywords

Navigation