Skip to main content
Log in

Roles of arabinogalactan proteins in cotyledon formation and cell wall deposition during embryo development of Arabidopsis

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Arabinogalactan proteins (AGPs) are a class of highly glycosylated, widely distributed proteins in higher plants. In the previous study, we found that the green fluorescence from JIM13-labeled AGPs was mainly distributed in embryo proper and the basal part of suspensor but gradually disappeared after the torpedo-stage embryos in Arabidopsis. And (β-d-Glc)3 Yariv phenylglycoside (βGlcY), a synthetic reagent that specifically binds to AGPs, could inhibit embryo development. In this study, as a continuous work, we investigated the AGP functions in embryo germination, cotyledon formation, and cell wall deposition in Arabidopsis embryos by using immunofluorescent, immunoenzyme, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques. The results showed that 50 μM βGlcY caused inhibition of embryo germination, formation of abnormal cotyledon embryos, and disorder of cotyledon vasculature. Compared with the normal embryos in vitro and in vivo, the AGPs and pectin signals were quite weaker in the whole abnormal embryos, whereas the cellulose signal was stronger in the shoot apical meristem (SAM) of abnormal embryo by calcofluor white staining. The FTIR assay demonstrated that the cell wall of abnormal embryos was relatively poorer in pectins and richer in cellulose than those of normal embryos. By TEM observation, the SAM cells of the abnormal embryos had less cytoplasm, more plastid and starch grains, and larger vacuole than that of normal embryos. These results indicated that AGPs may play roles in embryo germination, cotyledon formation, cell wall cellulose and pectin deposition, and cell division potentiality during embryo development of Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aboughe-Angone S, Nguema-Ona E, Ghosh P, Ishii T, Ray B, Driouich A (2008) Cell wall carbohydrates from fruit pulp of Argania spinosa: structural analysis of pectin and xyloglucan polysaccharides. Carbohydr Res 343:67–72

    Article  PubMed  CAS  Google Scholar 

  • Acosta-Garcia G, Vielle-Calzada JP (2004) A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell 16:2614–2628

    Article  PubMed  CAS  Google Scholar 

  • Andvème-Onzighi C, Sivaguru M, Judy-March J, Baskin TI, Driouich A (2002) The reb1-1 mutation of Arabidopsis alters the morphology of trichoblasts, the expression of arabinogalactan-proteins and the organization of cortical microtubules. Planta 215:949–958

    Article  Google Scholar 

  • Barron C, Parker ML, Mills EN, Rouau X, Wilson RH (2005) FTIR imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness. Planta 220:667–677

    Article  PubMed  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  PubMed  CAS  Google Scholar 

  • Chandler JW (2008) Cotyledon organogenesis. J Exp Bot 59:2917–2931

    Article  PubMed  CAS  Google Scholar 

  • Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20:25–35

    Article  PubMed  CAS  Google Scholar 

  • Chapman A, Blervacq AS, Vasseur J, Hilbert JL (2000) Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of β-glucosyl Yariv reagent and epitope localization during embryo development. Planta 211:305–314

    Article  PubMed  CAS  Google Scholar 

  • Chaves I, Regalado AP, Chen M, Ricardo CP, Showalter AM (2002) Programmed cell death induced by (β-D-galactosyl)3 Yariv reagent in Nicotiana tabacum BY-2 suspension cultured cells. Plant Physiol 116:548–553

    Article  CAS  Google Scholar 

  • Cruz-Garcia F, Hancock CN, Kim D, McClure B (2005) Stylar glycoproteins bind to S-RNase in vitro. Plant J 42:295–304

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Zhu JK (1997) A role for arabinogalactan-proteins in root epidermal cell expansion. Planta 203:289–294

    Google Scholar 

  • dos Santos ALW, Wietholter N, El Gueddari NE, Moerschbacher BM (2006) Protein expression during seed development in Araucaria angustifolia: transient accumulation of class IV chitinases and arabinogalactan proteins. Plant Physiol 127:138–148

    Article  Google Scholar 

  • Ellis M, Egelund J, Schultz C, Bacic A (2010) Arabinogalactan-proteins (AGPs): key regulators at the cell surface? Plant Physiol 153:403–419. doi:10.1104/pp.110.156000

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Showalter AM (1999) Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. Plant J 19:321–331

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Showalter AM (2000) Immunolocalization of LeAGP-1, a modular arabinogalactan-protein reveals its developmentally regulated expression in tomato. Planta 210:865–874

    Article  PubMed  CAS  Google Scholar 

  • Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, Vazquez-Santana S, Kim S, Phillips TE, Cruz-Garcia F, McClure B (2006) Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 439:805–810

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Qin Y, Zhao J (2006) Localization of an arabinogalactan protein epitope and the effects of Yariv phenylglycoside during zygotic embryo development of Arabidopsis thaliana. Protoplasma 229:21–31

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Suzuki Y, Miyamoto K, Ueda J, Yamaguchi I (2005) AtFLA11, a fasciclin-like arabino-galactan-protein, specifically localized in sclerenchyma cells. Biosci Biotechnol Biochem 69:1963–1969

    Article  PubMed  CAS  Google Scholar 

  • Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin like arabinogalactan proteins of Arabidopsis: a multigene family of putative cell adhesion molecules. Plant Physiol 133:1911–1925

    Article  PubMed  CAS  Google Scholar 

  • Jones L, Milne JL, Ashford D, McCann MC, McQueen-Mason SJ (2005) A conserved functional role of pectic polymers in stomatal guard cells from a range of plant species. Planta 221:255–264

    Article  PubMed  CAS  Google Scholar 

  • Lamport DTA, Kieliszewski MJ (2006) Salt stress upregulates periplasmic arabinogalactan-proteins: using salt stress to analyse AGP function. New Phytol 169:479–492

    Article  PubMed  CAS  Google Scholar 

  • Langan KJ, Nothnagel EA (1997) Cell surface arabinogalactan-proteins and their relation to cell proliferation and viability. Protoplasma 196:87–98

    Article  CAS  Google Scholar 

  • Levitin B, Richter D, Markovich I, Zik M (2008) Arabinogalactan proteins 6 and 11 are required for stamen and pollen function in Arabidopsis. Plant J 56:351–363

    Article  PubMed  CAS  Google Scholar 

  • Ma HL, Zhao J (2010) Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot 61:2647–2668

    Article  PubMed  CAS  Google Scholar 

  • MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG (2010) Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and eucalyptus. Plant J 62:689–703

    Article  PubMed  CAS  Google Scholar 

  • Mashiguchi K, Urakami E, Hasegawa M, Sanmiya K, Matsumoto I, Asami T, Suzuki Y (2008) Defense-related signaling by interaction of arabinogalactan proteins and β-glucosyl Yariv reagent inhibits gibberellin signaling in barley aleurone cells. Plant Cell Physiol 49:178–190

    Article  PubMed  CAS  Google Scholar 

  • Mashiguchi K, Asami T, Suzuki Y (2009) Genome-wide identification, structure and expression studies, and mutant collection of 22 early nodulin-like protein genes in Arabidopsis. Biosci Biotechnol Biochem 11:2452–2459

    Article  Google Scholar 

  • McCartney L, Steele-King CG, Jordan E, Knox JP (2003) Cell wall pectic (1 → 4)-β-D-galactan marks the acceleration of cell elongation in the Arabidopsis seedling. Plant J 33:447–454

    Article  PubMed  CAS  Google Scholar 

  • Motose H, Sugiyama M, Fukuda H (2004) A proteoglycan mediates inductive interaction during plant vascular development. Nature 429:873–878

    Article  PubMed  CAS  Google Scholar 

  • Nguema-Ona E, Andème-Onzighi C, Aboughe-Angone S, Bardor M, Ishii T, Lerouge P, Driouich A (2006) The reb1-1 mutation of Arabidopsis effect on the structure and localization of galactose-containing cell wall polysaccharides. Plant Physiol 140:1406–1417

    Article  PubMed  CAS  Google Scholar 

  • Pilling E, Höfte H (2003) Feedback from the wall. Curr Opin Plant Biol 6:611–616

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Zhao J (2006) Localization of arabinogalactan proteins in egg cells, zygotes, and two-celled proembryos and effects of β-D-glucosyl Yariv reagent on egg cell fertilization and zygote division in Nicotiana tabacum L. J Exp Bot 57:2061–2074

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Zhao J (2007) Localization of arabinogalactan-proteins in different stages of embryos and their role in cotyledon formation of Nicotiana tabacum L. Sex Plant Reprod 20:213–224

    Article  CAS  Google Scholar 

  • Qin Y, Chen D, Zhao J (2007) Localization of arabinogalactan proteins in anther, pollen, and pollen tube of Nicotiana tabacum L. Protoplasma 231:43–53

    Article  PubMed  CAS  Google Scholar 

  • Rauh RA, Basile DV (2003) Phenovariation induced in Streptocarpus prolixus (Gesneriaceae) by β-glucosyl Yariv reagent. Can J Bot 81:338–344

    Article  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide related signaling. Phytochemistry 57:929–967

    Article  PubMed  CAS  Google Scholar 

  • Sauer M, Friml J (2004) In vitro culture of Arabidopsis embryos within their ovules. Plant J 40:835–843

    Article  PubMed  Google Scholar 

  • Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161

    Article  PubMed  CAS  Google Scholar 

  • Seifert GJ, Barber C, Wells B, Dolan L, Roberts K (2002) Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers. Curr Biol 12:1840–1845

    Article  PubMed  CAS  Google Scholar 

  • Sheng X, Hu Z, Lu H, Wang X, Baluska F, Samaj J, Lin J (2006) Roles of the ubiquitin/proteasome pathway in pollen tube growth with emphasis on MG132-induced alterations in ultrastructure, cytoskeleton and cell wall components. Plant Physiol 141:1578–1590

    Article  PubMed  CAS  Google Scholar 

  • Shi HZ, Kim YS, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32

    Article  PubMed  CAS  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  PubMed  CAS  Google Scholar 

  • Showalter AM, Keppler B, Lichtenberg J, Gu DZ, Welch LR (2010) A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol 153:485–513

    Article  PubMed  CAS  Google Scholar 

  • Smith LG (2001) Plant cell division: building walls in the right places. Nat Rev Mol Cell Biol 2:33–39

    Article  PubMed  CAS  Google Scholar 

  • Sommer-Knudsen J, Lush WM, Bacic A, Clarke AE (1998) Re-evaluation of the role of a transmitting tract-specific glycoprotein on pollen tube growth. Plant J 13:529–535

    Article  CAS  Google Scholar 

  • Speranza A, Taddei AR, Gambellini G, Ovidi E, Scoccoanti V (2009) The cell wall of kiwifruit pollen tubes is a target for chromium toxicity: alterations to morphology, callose pattern and arabinogalactan protein distribution. Plant Biol 11:179–193

    Article  PubMed  CAS  Google Scholar 

  • Sun WX, Xu JF, Yang J, Marcia JK, Allan MS (2005) The lysine-rich arabinogalactan-protein subfamily in Arabidopsis: gene expression, glycoprotein purification and biochemical characterization. Plant Cell Physiol 46:975–984

    Article  PubMed  CAS  Google Scholar 

  • Synytsya A, Copikova J, Matejka P, Machovic V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106

    Article  CAS  Google Scholar 

  • Toole GA, Kakurakova M, Smith AC, Waldron KW, Wilson RH (2004) FTIR study of the Chara corallina cell wall under deformation. Carbohydr Res 339:629–635

    Article  PubMed  CAS  Google Scholar 

  • van Hengel AJ, Roberts K (2003) AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. Plant J 36:256–270

    Article  PubMed  Google Scholar 

  • Wu HM, Wang H, Cheung AY (1995) A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82:395–403

    Article  PubMed  CAS  Google Scholar 

  • Wu JZ, Lin Y, Zhang XL, Pang DW, Zhao J (2008) IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri. J Exp Bot 59:2529–2543

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Sardar HS, Mc Govern KR, Zhang Y, Showalter AM (2007) A lysine-rich arabinogalactan protein in Arabidopsis is essential for plant growth and development, including cell division and expansion. Plant J 49:629–640

    Article  PubMed  CAS  Google Scholar 

  • Zhang LY, Fang KF, Lin JX (2005) Heterotrimeric G protein α-subunit is localized in the plasma membrane of Pinus bungeana pollen tubes. Plant Sci 169:1066–1073

    Article  CAS  Google Scholar 

  • Zhang XL, Ren YJ, Zhao J (2008) Roles of extensins in cotyledon primordium formation and shoot apical meristem activity in Nicotiana tabacum. J Exp Bot 17:1–14

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. JP Knox (Centre for Plant Sciences, University of Leeds, UK) for the generous gifts of the pectins antibodies JIM5, JIM7, and JIM13. This work is supported by the National Natural Science Foundation of China (30770132, 30821064), the Special Doctorial Program Funds of the Ministry of Education of China (20090141110035), and the Major State Basic Research Program of China (2007CB108704).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhao.

Additional information

Handling Editor: Liwen Jiang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, J., Ren, Y., Yu, M. et al. Roles of arabinogalactan proteins in cotyledon formation and cell wall deposition during embryo development of Arabidopsis . Protoplasma 248, 551–563 (2011). https://doi.org/10.1007/s00709-010-0204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0204-y

Keywords

Navigation