Skip to main content
Log in

Microtubule motors and pollen tube growth—still an open question

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The growth of pollen tubes is supported by the continuous supply of secretory vesicles in the tip area. Movement and accumulation of vesicles is driven by the dynamic interplay between the actin cytoskeleton and motor proteins of the myosin family. A combination of the two protein systems is also responsible for the bidirectional movement of larger organelle classes. In contrast, the role of microtubules and microtubule-based motors is less clear and often ambiguous. Nevertheless, there is evidence which shows that the pollen tube contains a number of microtubule-based motors of the kinesin family. These motor proteins are likely to be associated with pollen tube organelles and, consequently, they have been hypothesized to participate in the distribution of organelles during pollen tube growth. Whether microtubule motor proteins take part in either the transport or positioning of organelles is not known for sure, but there is evidence for this second possibility. This review will discuss the current knowledge of microtubule-based motor proteins (including kinesins and hypothetical dyneins) and will make some hypothesis about their role in the pollen tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderhag P, Hepler PK, Lazzaro MD (2000) Microtubules and microfilaments are both responsible for pollen tube elongation in the conifer Picea abies (Norway spruce). Protoplasma 214:141–157

    Article  Google Scholar 

  • Aouar L, Chebli Y, Geitmann A (2009) Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes. Sex Plant Reprod 23:15–27

    Article  PubMed  Google Scholar 

  • Astrom H (1992) Acetylated alpha-tubulin in the pollen tube microtubules. Cell Biol Int Rep 16:871–881

    Article  CAS  PubMed  Google Scholar 

  • Astrom H, Sorri O, Raudaskoski M (1995) Role of microtubules in the movement of the vegetative nucleus and generative cell in tobacco pollen tubes. Sex Plant Reprod 8:61–69

    Article  Google Scholar 

  • Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008) Myosin XI-K is required for rapid trafficking of Golgi stacks, peroxisomes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146:1098–1108

    Article  CAS  PubMed  Google Scholar 

  • Avisar D, Abu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes IA (2009) A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol 150:700–709

    Article  CAS  PubMed  Google Scholar 

  • Barroso C, Chan J, Allan V, Doonan J, Hussey P, Lloyd C (2000) Two kinesin-related proteins associated with the cold-stable cytoskeleton of carrot cells: characterization of a novel kinesin, DcKRP120-2. Plant J 24:859–868

    Article  CAS  PubMed  Google Scholar 

  • Bibikova TN, Blancaflor EB, Gilroy S (1999) Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J 17:657–665

    Article  CAS  PubMed  Google Scholar 

  • Bove J, Vaillancourt B, Kroeger J, Hepler PK, Wiseman PW, Geitmann A (2008) Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching. Plant Physiol 147:1646–1658

    Article  CAS  PubMed  Google Scholar 

  • Brown RC, Lemmon BE (2001) The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma 215:35–49

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Bartalesi A, Del Casino C, Moscatelli A, Tiezzi A, Cresti M (1993) The kinesin-immunoreactive homologue from Nicotiana tabacum pollen tube: biochemical properties and subcellular localization. Planta 191:496–506

    Article  CAS  Google Scholar 

  • Cai G, Romagnoli S, Moscatelli A, Ovidi E, Gambellini G, Tiezzi A, Cresti M (2000) Identification and characterization of a novel microtubule-based motor associated with membranous organelles in tobacco pollen tubes. Plant Cell 12:1719–1736

    Article  CAS  PubMed  Google Scholar 

  • Cardenas L, Lovy-Wheeler A, Wilsen KL, Hepler PK (2005) Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. Cell Motil Cytoskeleton 61:112–127

    Article  CAS  PubMed  Google Scholar 

  • Cardenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol 146:1611–1621

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Chen CY, Glaven RH, de Graaf BHJ, Vidali L, Hepler PK, Hm Wu (2002) Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell 14:945–962

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Duan Qh, Costa SS, de Graaf BHJ, Di Stilio VS, Feijo J, Hm Wu (2008) The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant 1:686–702

    Article  CAS  PubMed  Google Scholar 

  • Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Hofte H, Vernhettes S (2009) Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:1141–1154

    Article  CAS  PubMed  Google Scholar 

  • de Graaf BHJ, Cheung AY, Andreyeva T, Levasseur K, Kieliszewski M, Hm Wu (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell 17:2564–2579

    Article  PubMed  Google Scholar 

  • de Win AH, Pierson ES, Derksen J (1999) Rational analyses of organelle trajectories in tobacco pollen tubes reveal characteristics of the actomyosin cytoskeleton. Biophys J 76:1648–1658

    Article  PubMed  Google Scholar 

  • Del Casino C, Li Y, Moscatelli A, Scali M, Tiezzi A, Cresti M (1993) Distribution of microtubules during the growth of tobacco pollen tubes. Biol Cell 79:125–132

    Article  Google Scholar 

  • Del Duca S, Serafini-Fracassini D, Bonner PL, Cresti M, Cai G (2009) Effects of post-translational modifications catalyzed by pollen transglutaminase on the functional properties of microtubules and actin filaments. Biochem J 418:651–664

    Article  PubMed  Google Scholar 

  • Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206:452–460

    Article  CAS  Google Scholar 

  • Franke WW, Herth W, VanDerWoude WJ, Morré DJ (1972) Tubular and filamentous structures in pollen tubes: possible involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 105:217–341

    Article  Google Scholar 

  • Frey N, Klotz J, Nick P (2009) Dynamic bridges—a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. Plant Cell Physiol 50:1493–1506

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152:1019–1032

    Article  CAS  PubMed  Google Scholar 

  • Geitmann A, Li Y-Q, Cresti M (1995) The role of cytoskeleton and dictyosome activity in the pulsatory growth of Nicotiana tabacum and Petunia hybrida pollen tubes. Bot Acta 109:102–109

    Google Scholar 

  • Gossot O, Geitmann A (2007) Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta 226:405–416

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1989) Myosin associated with the surface of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes. J Cell Sci 94:319–325

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Moscatelli A (1988) Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube. J Cell Sci 91:49–60

    Google Scholar 

  • Holzinger A, Lutz-Meindl U (2002) Kinesin-like proteins are involved in postmitotic nuclear migration of the unicellular green alga Micrasterias denticulata. Cell Biol Int 26:689–697

    Article  CAS  PubMed  Google Scholar 

  • Hook P, Vallee RB (2006) The dynein family at a glance. J Cell Sci 119:4369–4371

    Article  CAS  PubMed  Google Scholar 

  • Kohno T, Shimmen T (1988) Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2+. J Cell Biol 106:1539–1543

    Article  CAS  PubMed  Google Scholar 

  • Krishnakumar S, Oppenheimer DG (1999) Extragenic suppressors of the Arabidopsis zwi-3 mutation identify new genes that function in trichome branch formation and pollen tube growth. Development 126:3079–3088

    CAS  PubMed  Google Scholar 

  • Lancelle SA, Hepler PK (1991) Association of actin with cortical microtubules revealed by immunogold localization in Nicotiana pollen tubes. Protoplasma 165:167–172

    Article  CAS  Google Scholar 

  • Lancelle SA, Cresti M, Hepler PK (1987) Ultrastructure of cytoskeleton in freeze-substituded pollen tubes of Nicotiana tabacum. Protoplasma 140:141–150

    Article  Google Scholar 

  • Langhans M, Niemes S, Pimpl P, Robinson DG (2009) Oryzalin bodies: in addition to its anti-microtubule properties, the dinitroaniline herbicide oryzalin causes nodulation of the endoplasmic reticulum. Protoplasma 236:73–84

    Article  CAS  PubMed  Google Scholar 

  • Lawrence CJ, Morris NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363

    Article  CAS  PubMed  Google Scholar 

  • Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22

    Article  CAS  PubMed  Google Scholar 

  • Lee YRJ, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yan L (2000) Golgi 58K-like protein in pollens and pollen tubes of Lilium davidii. Science in China Series C: Life Sci 43:402–408

    Article  CAS  Google Scholar 

  • Liu B, Palevitz BA (1996) Localization of a kinesin-like protein in the generative cells of tobacco. Protoplasma 195:78–89

    Article  CAS  Google Scholar 

  • Liu GQ, Cai G, Del Casino C, Tiezzi A, Cresti M (1994) Kinesin-related polypeptide is associated with vesicles from Corylus avellana pollen. Cell Motil Cytoskeleton 29:155–166

    Article  CAS  PubMed  Google Scholar 

  • Lovy-Wheeler A, Cardenas L, Kunkel JG, Hepler PK (2007) Differential organelle movement on the actin cytoskeleton in lily pollen tubes. Cell Motil Cytoskeleton 64:217–232

    Article  PubMed  Google Scholar 

  • Lu L, Lee YRJ, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823

    Article  CAS  PubMed  Google Scholar 

  • Mascarenhas JP, Lafountain J (1972) Protoplasmic streaming, cytochalasin B, and growth of the pollen tube. Tissue Cell 4:11–14

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Collings D, Asada T (2001) Identification of a novel plant-specific kinesin-like protein that is highly expressed in interphase tobacco BY-2 cells. Protoplasma 215:105–115

    Article  CAS  PubMed  Google Scholar 

  • McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21:3026–3040

    Article  CAS  PubMed  Google Scholar 

  • Morejohn LC, Fosket DE (1991) The biochemistry of compounds with anti-microtubule activity in plant cells. Pharmacol Ther 51:217–230

    Article  CAS  PubMed  Google Scholar 

  • Moscatelli A, Del Casino C, Lozzi L, Cai G, Scali M, Tiezzi A, Cresti M (1995) High molecular weight polypeptides related to dynein heavy chains in Nicotiana tabacum pollen tubes. J Cell Sci 108:1117–1125

    CAS  PubMed  Google Scholar 

  • Moscatelli A, Cai G, Ciampolini F, Cresti M (1998) Dynein heavy chain-related polypeptides are associated with organelles in pollen tubes of Nicotiana tabacum. Sex Plant Reprod 11:31–40

    Article  CAS  Google Scholar 

  • Moscatelli A, Ciampolini F, Rodighiero S, Onelli E, Cresti M, Santo N, Idilli A (2007) Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J Cell Sci 120:3804–3819

    Article  CAS  PubMed  Google Scholar 

  • Nebenführ A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1142

    Article  PubMed  Google Scholar 

  • Ni CZ, Wang HQ, Xu T, Qu Z, Liu GQ (2005) AtKP1, a kinesin-like protein, mainly localizes to mitochondria in Arabidopsis thaliana. Cell Res 15:725–733

    Article  CAS  PubMed  Google Scholar 

  • Pathak D, Sepp KJ, Hollenbeck PJ (2010) Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. J Neurosci 30:8984–8992

    Article  CAS  PubMed  Google Scholar 

  • Paves H, Truve E (2007) Myosin inhibitors block accumulation movement of chloroplasts in Arabidopsis thaliana leaf cells. Protoplasma 230:165–169

    Article  CAS  PubMed  Google Scholar 

  • Peremyslov VV, Prokhnevsky AI, Avisar D, Dolja VV (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis. Plant Physiol 146:1109–1116

    Article  CAS  PubMed  Google Scholar 

  • Peris L, Wagenbach M, Lafanechere L, Brocard J, Moore AT, Kozielski F, Job D, Wordeman L, Andrieux A (2009) Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 185:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Pertl H, Schulze WX, Obermeyer G (2009) The pollen organelle membrane proteome reveals highly spatial-temporal dynamics during germination and tube growth of lily pollen. J Proteome Res 8:5142–5152

    Article  CAS  PubMed  Google Scholar 

  • Pierson ES, Kengen HMP, Derksen J (1989) Microtubules and actin filaments co-localize in pollen tubes of Nicotiana tabacum L. and Lilium longiflorum Thunb. Protoplasma 150:75–77

    Article  Google Scholar 

  • Poulter NS, Vatovec S, Franklin-Tong VE (2008) Microtubules are a target for self-incompatibility signaling in Papaver pollen. Plant Physiol 146:1358–1367

    Article  CAS  PubMed  Google Scholar 

  • Preuss ML, Delmer DP, Liu B (2003) The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol 132:154–160

    Article  CAS  PubMed  Google Scholar 

  • Preuss ML, Kovar DR, Lee Y-RJ, Staiger CJ, Delmer DP, Liu B (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:3945–3955

    Article  CAS  PubMed  Google Scholar 

  • Reddy ASN, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2:2

    Article  CAS  PubMed  Google Scholar 

  • Romagnoli S, Cai G, Cresti M (2003) In vitro assays demonstrate that pollen tube organelles use kinesin-related motor proteins to move along microtubules. Plant Cell 15:251–269

    Article  CAS  PubMed  Google Scholar 

  • Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M (2007) Microtubule- and actin filament-dependent motors are distributed on pollen tube mitochondria and contribute differently to their movement. Plant Cell Physiol 48:345–361

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Honing H, Nishioka M, Uehara Y, Takahashi M, Fujisawa N, Saji K, Seki M, Shinozaki K, Jones MA, Smirnoff N, Okada K, Wasteneys GO (2008) Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. Plant J 53:157–171

    Article  CAS  PubMed  Google Scholar 

  • Seog DH, Lee DH, Lee SK (2004) Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J Korean Med Sci 19:1–7

    Article  CAS  PubMed  Google Scholar 

  • Shanina NA, Lazareva EM, Skorova EY, Chentsov YS, Smirnova EA (2009) A high molecular weight polypeptide cross-reacting with the antibodies to the dynein heavy chain localizes to the subset of Golgi complex in higher plant cells. Cell Biol Int 33:290–300

    Article  CAS  PubMed  Google Scholar 

  • Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21:271–295

    Article  CAS  PubMed  Google Scholar 

  • Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQ, Kadota A, Wada M (2010) Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:8860–8865

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Hepler PK, Scordilis SP (1989) Immunochemical and immunocytochemical identification of a myosin heavy chain polypeptide in Nicotiana tabacum pollen tube. J Cell Sci 92:569–574

    CAS  PubMed  Google Scholar 

  • Terasaka O, Niitsu T (1994) Kinesin localized in the pollen tube tips of Pinus densiflora. Jpn J Palynol 40:1–6

    Google Scholar 

  • Tiezzi A, Moscatelli A, Cai G, Bartalesi A, Cresti M (1992) An immunoreactive homolog of mammalian kinesin in Nicotiana tabacum pollen tubes. Cell Motil Cytoskeleton 21:132–137

    Article  CAS  PubMed  Google Scholar 

  • Tirlapur U, Cai G, Faleri C, Moscatelli A, Scali M, Del Casino C, Tiezzi A, Cresti M (1995) Confocal imaging and immunogold electron microscopy of changes in distribution of myosin during pollen hydration, germination and pollen tube growth in Nicotiana tabacum L. Eur J Cell Biol 67:209–217

    CAS  PubMed  Google Scholar 

  • Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  CAS  PubMed  Google Scholar 

  • Van Gestel K, Kohler RH, Verbelen JP (2002) Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J Exp Bot 53:659–667

    Article  PubMed  Google Scholar 

  • Vanstraelen M, Inze D, Geelen D (2006) Mitosis-specific kinesins in Arabidopsis. Trends Plant Sci 11:167–175

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Teng Y, Wang Q, Li X, Sheng X, Zheng M, Samaj J, Baluska F, Lin J (2006) Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol 141:1591–1603

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Tse YC, Law AH, Sun SS, Sun YB, Xu ZF, Hillmer S, Robinson DG, Jiang L (2010) Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J 61:826–838

    Article  CAS  PubMed  Google Scholar 

  • Wasteneys GO, Ambrose JC (2009) Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol 19:62–71

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Liu B, Li Y (2005) Distribution of a kinesin-related protein on Golgi apparatus of tobacco pollen tubes. Chin Sci Bullettin 50:2175–2181

    CAS  Google Scholar 

  • Wei L, Zhang W, Liu Z, Li Y (2009) AtKinesin-13A is located on Golgi-associated vesicle and involved in vesicle formation/budding in Arabidopsis root-cap peripheral cells. BMC Plant Biol 9:138

    Article  PubMed  Google Scholar 

  • Wickstead B, Gull K (2007) Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8:1708–1721

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y, Ren D, Liu G (2009) A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J 421:171–180

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Gao P, Zhang H, Huang S, Zheng ZL (2007) A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis. PLoS 10:1–12

    CAS  Google Scholar 

  • Yokota E, Shimmen T (1994) Isolation and characterization of plant myosin from pollen tubes of lily. Protoplasma 177:153–162

    Article  CAS  Google Scholar 

  • Yokota E, McDonald AR, Liu B, Shimmen T, Palevitz BA (1995) Localization of a 170 kDa myosin heavy chain in plant cells. Protoplasma 185:178–187

    Article  CAS  Google Scholar 

  • Yokota E, Muto S, Shimmen T (1999) Inhibitory regulation of higher-plant myosin by Ca2+ ions. Plant Physiol 119:231–240

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhang B, Qian Q, Yu Y, Li R, Zhang J, Liu X, Zeng D, Li J, Zhou Y (2010) Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. Plant J 63:312–328

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Wang Q, Teng Y, Wang X, Wang F, Chen T, Samaj J, Lin J, Logan D (2010) The speed of mitochondrial movement is regulated by the cytoskeleton and myosin in Picea wilsonii pollen tubes. Planta 231:779–791

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Burk DH, Morrison WH III, Ye ZH (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely express gratitude to Julie Lee (Department of Plant Biology, University of California at Davis, CA) for critically commenting the manuscript and for helpful suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Cai.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, G., Cresti, M. Microtubule motors and pollen tube growth—still an open question. Protoplasma 247, 131–143 (2010). https://doi.org/10.1007/s00709-010-0214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0214-9

Keywords

Navigation