Skip to main content
Log in

Osmosensing and osmosignaling in Corynebacterium glutamicum

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The Gram-positive soil bacterium Corynebacterium glutamicum is used in microbial biotechnology for the large-scale production of amino acids, e.g., l-glutamate and l-lysine. We have studied the response of this organism to hyperosmotic challenge at the level of both transcription and protein activity. Two systems responding to hyperosmotic stress in C. glutamicum are reviewed here, the two component system MtrAB and the glycine-betaine uptake system BetP. The osmosensory two-component system consists of the membrane-bound histidine kinase MtrB and the soluble response regulator MtrA. MtrB was shown to perceive a so far unknown physical stimulus related to hyperosmotic stress via the cytoplasmically oriented phosphorylation domain, and to transduce the signal to the DNA via MtrA. The secondary active transporter BetP takes up betaine in cotransport with two Na+ ions. BetP responds to hyperosmotic stress by increased transcription mediated via MtrAB signaling, and by instant activation of transport. In the mechanism of BetP activation, the C-terminal, regulatory domain of BetP, the cytoplasmic concentration of K+, and negative membrane surface charges are involved. The molecular mechanism of the activation process is discussed in relation to the recently published X-ray structure of BetP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Biemans-Oldehinkel E, Mahmood NA, Poolman B (2006) A sensor for intracellular ionic strength. Proc Natl Acad Sci USA 103:10624–10629

    Article  PubMed  CAS  Google Scholar 

  • Bolen DW, Rose GD (2008) Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu Rev Biochem 77:339–362

    Article  PubMed  CAS  Google Scholar 

  • Booth IR, Edwards MD, Black S, Schumann U, Miller S (2007) Mechanosensitive channels in bacteria: signs of closure? Nat Rev Microbiol 5:431–440

    Article  PubMed  CAS  Google Scholar 

  • Botzenhardt J, Morbach S, Krämer R (2004) Activity regulation of the betaine transporter BetP of Corynebacterium glutamicum in response to osmotic compensation. Biochim Biophys Acta 1667:229–240

    Article  PubMed  CAS  Google Scholar 

  • Bremer E, Krämer R (2000) Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, pp 79–97

    Google Scholar 

  • Dinnbier U, Limpinsel E, Schmid R, Bakker E (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K12 to elevated sodium chloride concentrations. Arch Microbiol 150:348–357

    Article  PubMed  CAS  Google Scholar 

  • Farwick M, Siewe RM, Krämer R (1995) Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum. J Bacteriol 177:4690–4695

    PubMed  CAS  Google Scholar 

  • Grammann K, Volke A, Kunte HJ (2002) New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581. J Bacteriol 184:3078–3085

    Article  PubMed  CAS  Google Scholar 

  • Hamann K, Zimmann P, Altendorf KH (2008) Reduction of turgor is not the stimulus for the sensor kinase KdpD of Escherichia coli. J Bacteriol 190:2360–2367

    Article  PubMed  CAS  Google Scholar 

  • Janausch IG, Garcia-Moreno I, Unden G (2002) Function of DcuS from Escherichia coli as a fumarate-stimulated histidine protein kinase in vitro. J Biol Chem 277:39809–39814

    Article  PubMed  CAS  Google Scholar 

  • Jung K, Hamann K, Revermann A (2001) K+ stimulates specifically the autokinase activity of purified and reconstituted EnvZ of Escherichia coli. J Biol Chem 272:10847–10852

    Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  PubMed  CAS  Google Scholar 

  • Kneuper H, Janausch IG, Vijayan V, Zweckstetter M, Bock V, Griesinger C, Unden F (2005) The nature of the stimulus and of the fumarate binding site of the fumarate sensor DcuS of Escherichia coli. J Biol Chem 280:20596–20603

    Article  PubMed  CAS  Google Scholar 

  • Kočan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VW, Bott M (2006) Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS–PhoR system in the phosphate starvation response. J Bacteriol 188:724–732

    Article  PubMed  CAS  Google Scholar 

  • Krämer R, Morbach S (2004) BetP of Corynebacterium glutamicum, a transporter with three different functions: betaine transport, osmosensing, and osmoregulation. Biochim Biophys Acta 1658:31–36

    Article  PubMed  CAS  Google Scholar 

  • Krämer R, Ziegler C (2009) Regulative interactions of the osmosensing C-terminal domain in the trimeric glycine-betaine transporter BetP from Corynebacterium glutamicum. Biol Chem (in press)

  • Möker N, Brocker M, Schaffer S, Krämer R, Morbach S, Bott M (2004) Deletion of the genes encoding the MtrA–MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoregulation. Mol Microbiol 54:420–438

    Article  PubMed  CAS  Google Scholar 

  • Möker N, Krämer J, Unden G, Krämer R, Morbach S (2007a) In vitro analysis of the two-component system MtrB–MtrA from Corynebacterium glutamicum. J Bacteriol 189:3645–3649

    Article  PubMed  CAS  Google Scholar 

  • Möker N, Reihlen P, Krämer R, Morbach S (2007b) Osmosensing properties of the histidine kinase MtrB from Corynebacterium glutamicum. J Biol Chem 282:27666–27677

    Article  PubMed  Google Scholar 

  • Morbach S, Krämer R (2004) Osmoregulation and osmosensing by uptake carriers for compatible solutes in bacteria. In: Boles E, Krämer R (eds) Molecular mechanisms controlling transmembrane transport, topics in current genetics, vol 9. Springer, Berlin, pp 155–178

    Google Scholar 

  • Morbach S, Krämer R (2005a) Osmoregulation in Corynebacterium glutamicum. In: Eggeling L, Bott M (eds) Corynebacterium glutamicum. CRC Press LLC, Boca Raton, pp 417–438

    Google Scholar 

  • Morbach S, Krämer R (2005b) Structure and Function of the betaine uptake system BetP of Corynebacterium glutamicum: strategies to sense osmotic and chill stress. J Mol Microbiol Biotechnol 10:143–153

    Article  PubMed  CAS  Google Scholar 

  • Morbach S, Krämer R (2008) Environmental stress response of Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacterium glutamicum genomics and molecular biology. Caister Academic Press, Norfolk, pp 313–334

    Google Scholar 

  • Nottebrock D, Meyer U, Krämer R, Morbach S (2003) Molecular and biochemical characterization of mechanosensitive channels in Corynebacterium glutamicum. FEMS Microb Lett 218:305–309

    Article  CAS  Google Scholar 

  • Ott V, Koch J, Späte K, Morbach S, Krämer R (2008) Regulatory properties and interaction of the C- and N-terminal domains of BetP, an osmoregulated betaine transporter from Corynebacterium glutamicum. Biochemistry 47:12208–12218

    Article  PubMed  CAS  Google Scholar 

  • Özcan N, Krämer R, Morbach S (2005) Chill activation of compatible solute transporters in Corynebacterium glutamicum at the level of transport activity. J Bacteriol 187:4752–4759

    Article  PubMed  CAS  Google Scholar 

  • Özcan N, Ejsing CS, Shevchenko A, Lipski A, Morbach S, Krämer R (2007) Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum. J Bacteriol 189:7485–7496

    Article  PubMed  CAS  Google Scholar 

  • Peter H, Burkovski A, Krämer R (1996) Isolation, characterization, and expression of the Corynebacterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine. J Bacteriol 178:5229–5234

    PubMed  CAS  Google Scholar 

  • Peter H, Burkovski A, Krämer R (1998a) Osmosensing by N- and C-terminal extensions of the glycine betaine uptake system BetP of Corynebacterium glutamicum. J Biol Chem 273:2567–2574

    Article  PubMed  CAS  Google Scholar 

  • Peter H, Weil B, Burkovski A, Krämer R, Morbach S (1998b) Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: identification, sequencing and characterization of the proline/ectoine uptake system ProP, and the ectoine/proline/glycine betaine carrier EctP. J Bacteriol 180:6005–6012

    PubMed  CAS  Google Scholar 

  • Poolman B, Spitzer JJ, Wood JM (2004) Bacterial osmosensing: roles of membrane structure and electrostatics in lipid–protein and protein–protein interactions. Biochim Biophys Acta 1666:88–104

    Article  PubMed  CAS  Google Scholar 

  • Ressl S, Terwissha van Scheltinga AC, Vonrhein C, Ott V, Ziegler C (2009) Molecular basis of transport and regulation of the Na+/betaine symporter BetP. Nature 458:47–52

    Article  PubMed  CAS  Google Scholar 

  • Rübenhagen R, Rönsch H, Jung H, Krämer R, Morbach S (2000) Osmosensor and osmoregulator properties of the betaine carrier BetP from Corynebacterium glutamicum in proteoliposomes. J Biol Chem 275:735–741

    Article  PubMed  Google Scholar 

  • Rübenhagen R, Morbach S, Krämer R (2001) The osmoreactive betaine carrier BetP from Corynebacterium glutamicum is a sensor for cytoplasmic K+. EMBO J 20:5412–5420

    Article  PubMed  Google Scholar 

  • Ruffert S, Berrier C, Krämer R, Ghazi A (1999) Identification of mechanosensitive ion channels in the cytoplasmic membrane of Corynebacterium glutamicum. J Bacteriol 181:1673–1676

    PubMed  CAS  Google Scholar 

  • Schiller D, Rübenhagen R, Krämer R, Morbach S (2004a) The C-terminal domain of the betaine carrier BetP of Corynebacterium glutamicum is directly involved in sensing K+ as an osmotic stimulus. Biochemistry 43:5583–5591

    Article  PubMed  CAS  Google Scholar 

  • Schiller D, Krämer R, Morbach S (2004b) Cation specificity of osmosensing by the betaine carrier BetP of Corynebacterium glutamicum. FEBS Lett 563:108–112

    Article  PubMed  CAS  Google Scholar 

  • Schiller D, Ott V, Krämer R, Morbach S (2006) Influence of membrane composition on osmosensing by the betaine carrier BetP from Corynebacterium glutamicum. J Biol Chem 281:7737–7746

    Article  PubMed  CAS  Google Scholar 

  • Tsatskis Y, Khambati J, Dobson M, Bogdanov M, Dowhan W, Wood JM (2005) The osmotic activation of transporter ProP is tuned by both ist C-terminal coiled-coil and osmotically induced changes in phospholipid composition. J Biol Chem 280:1387–1394

    Article  CAS  Google Scholar 

  • Van der Heide T, Stuart MCA, Poolman B (2001) On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J 20:7022–7032

    Article  PubMed  Google Scholar 

  • Voelkner P, Puppe W, Altendorf KH (1993) Characterization of the KdpD protein, the sensor kinase of the K+ translocating Kdp system of Escherichia coli. Eur J Biochem 217:1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262

    PubMed  CAS  Google Scholar 

  • Wood JM (2006) Osmosensing by bacteria. Science STKE pe43

  • Wood JM (2007) Bacterial osmosensing transporters. Methods Enzymol 478:77–107

    Article  CAS  Google Scholar 

  • Ziegler C, Morbach S, Schiller D, Krämer R, Tziatzios C, Schubert D, Kühlbrandt W (2004) Projection structure and oligomeric state of the osmoregulated sodium/glycine betaine symporter BetP of Corynebacterium glutamicum. J Mol Biol 337:1137–1147

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I am indebted to Christine Ziegler, Frankfurt, for Fig. 5c, and the Deutsche Forschungsgemeinschaft for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Krämer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krämer, R. Osmosensing and osmosignaling in Corynebacterium glutamicum . Amino Acids 37, 487–497 (2009). https://doi.org/10.1007/s00726-009-0271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0271-6

Keywords

Navigation