Skip to main content

Advertisement

Log in

Transcriptional regulation and functional implication of S100P in cancer

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

S100P is an EF-hand calcium-binding protein that was originally identified in placenta and subsequently associated with cancer. It is a member of S100 family of proteins that function as extracellular and/or intracellular regulators of diverse cellular processes and participate in various human pathologies. S100P expression was detected in a spectrum of human tumor cell lines and tissues derived from breast, prostate, pancreas, lung and colon, where it was connected with malignant phenotype, hormone independence and resistance to chemotherapy. Overexpression of S100P was shown to promote tumorigenesis and metastasis in diverse cancer models. Functional studies of S100P indicate that its biological activities are exerted through extracellular signaling via RAGE receptor, resulting in increased proliferation and survival, or through intracellular interaction with ezrin, leading to increased cell migration and metastasis. Molecular mechanisms regulating expression of S100P in cancer cells are just emerging. Besides earlier described DNA methylation, recent studies implicate bone morphogenic protein and non-steroidal anti-inflammatory drugs in control of S100P expression during tumor progression. Functional analysis of S100P promoter identified SMAD, STAT/CREB and SP/KLF binding sites as key regulatory elements participating in transcriptional activation of S100P gene in cancer cells. Moreover, the most recent data reveal that expression of S100P is up-regulated by activation of glucocorticoid receptor suggesting that S100P could play a role in therapy resistance mediated by glucocorticoids in solid tumors. Elucidation of S100P regulation is an important step towards understanding biological significance of its tissue distribution and proposing strategies for targeted S100P modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Amler LC, Agus DB, LeDuc C, Sapinoso ML, Fox WD, Kern S, Lee D, Wang V, Leysens M, Higgins B, Martin J, Gerald W, Dracopoli N, Cordon-Cardo C, Scher HI, Hampton GM (2000) Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res 60:6134–6141

    PubMed  CAS  Google Scholar 

  • Arumugam T, Simeone DM, Schmidt AM, Logsdon CD (2004) S100P stimulates cell proliferation and survival via receptor for activated glycation end products (RAGE). J Biol Chem 279:5059–5065

    Article  PubMed  CAS  Google Scholar 

  • Arumugam T, Simeone DM, Van Golen K, Logsdon CD (2005) S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res 11:5356–5364

    Article  PubMed  CAS  Google Scholar 

  • Austermann J, Nazmi AR, Muller-Tidow C, Gerke V (2008) Characterization of the Ca2+-regulated ezrin-S100P interaction and its role in tumor cell migration. J Biol Chem 283:29331–29340

    Article  PubMed  CAS  Google Scholar 

  • Averboukh L, Liang P, Kantoff PW, Pardee AB (1996) Regulation of S100P expression by androgen. Prostate 29:350–355

    Article  PubMed  CAS  Google Scholar 

  • Bartling B, Rehbein G, Schmitt WD, Hofmann HS, Silber RE, Simm A (2007) S100A2-S100P expression profile and diagnosis of non-small cell lung carcinoma: impairment by advanced tumour stages and neoadjuvant chemotherapy. Eur J Cancer 43:1935–1943

    Article  PubMed  CAS  Google Scholar 

  • Basu GD, Azorsa DO, Kiefer JA, Rojas AM, Tuzmen S, Barrett MT, Trent JM, Kallioniemi O, Mousses S (2008) Functional evidence implicating S100P in prostate cancer progression. Int J Cancer 123:330–339

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Gerke V, Kube E, Weber K (1992) S100P, a novel Ca(2+)-binding protein from human placenta. cDNA cloning, recombinant protein expression and Ca2+ binding properties. Eur J Biochem 207:541–547

    Article  PubMed  CAS  Google Scholar 

  • Bertram J, Palfner K, Hiddemann W, Kneba M (1998) Elevated expression of S100P, CAPL and MAGE 3 in doxorubicin-resistant cell lines: comparison of mRNA differential display reverse transcription-polymerase chain reaction and subtractive suppressive hybridization for the analysis of differential gene expression. Anticancer Drugs 9:311–317

    Article  PubMed  CAS  Google Scholar 

  • Black AR, Black JD, Azizkhan-Clifford J (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188:143–160

    Article  PubMed  CAS  Google Scholar 

  • Bray JD, Jelinsky S, Ghatge R, Bray JA, Tunkey C, Saraf K, Jacobsen BM, Richer JK, Brown EL, Winneker RC, Horwitz KB, Lyttle CR (2005) Quantitative analysis of gene regulation by seven clinically relevant progestins suggests a highly similar mechanism of action through progesterone receptors in T47D breast cancer cells. J Steroid Biochem Mol Biol 97:328–341

    Article  PubMed  CAS  Google Scholar 

  • Bulk E, Hascher A, Liersch R, Mesters RM, Diederichs S, Sargin B, Gerke V, Hotfilder M, Vormoor J, Berdel WE, Serve H, Muller-Tidow C (2008) Adjuvant therapy with small hairpin RNA interference prevents non-small cell lung cancer metastasis development in mice. Cancer Res 68:1896–1904

    Article  PubMed  CAS  Google Scholar 

  • Crnogorac-Jurcevic T, Missiaglia E, Blaveri E, Gangeswaran R, Jones M, Terris B, Costello E, Neoptolemos JP, Lemoine NR (2003) Molecular alterations in pancreatic carcinoma: expression profiling shows that dysregulated expression of S100 genes is highly prevalent. J Pathol 201:63–74

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Shi J, Wilkerson M, Meschter S, Dupree W, Lin F (2008) Usefulness of S100P in diagnosis of adenocarcinoma of pancreas on fine-needle aspiration biopsy specimens. Am J Clin Pathol 129:81–88

    Article  PubMed  Google Scholar 

  • Diederichs S, Bulk E, Steffen B, Ji P, Tickenbrock L, Lang K, Zanker KS, Metzger R, Schneider PM, Gerke V, Thomas M, Berdel WE, Serve H, Muller-Tidow C (2004) S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res 64:5564–5569

    Article  PubMed  CAS  Google Scholar 

  • Donato R (2003) Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60:540–551

    Article  PubMed  CAS  Google Scholar 

  • Dowen SE, Crnogorac-Jurcevic T, Gangeswaran R, Hansen M, Eloranta JJ, Bhakta V, Brentnall TA, Luttges J, Kloppel G, Lemoine NR (2005) Expression of S100P and its novel binding partner S100PBPR in early pancreatic cancer. Am J Pathol 166:81–92

    Article  PubMed  CAS  Google Scholar 

  • Filipek A, Jastrzebska B, Nowotny M, Kuznicki J (2002) CacyBP/SIP, a calcyclin and Siah-1-interacting protein, binds EF-hand proteins of the S100 family. J Biol Chem 277:28848–28852

    Article  PubMed  CAS  Google Scholar 

  • Fuentes MK, Nigavekar SS, Arumugam T, Logsdon CD, Schmidt AM, Park JC, Huang EH (2007) RAGE activation by S100P in colon cancer stimulates growth, migration, and cell signaling pathways. Dis Colon Rectum 50:1230–1240

    Article  PubMed  Google Scholar 

  • Fukushima N, Sato N, Prasad N, Leach SD, Hruban RH, Goggins M (2004) Characterization of gene expression in mucinous cystic neoplasms of the pancreas using oligonucleotide microarrays. Oncogene 23:9042–9051

    Article  PubMed  CAS  Google Scholar 

  • Gibadulinova A, Barathova M, Kopacek J, Hulikova A, Pastorekova S, Kettmann R, Pastorek J (2005) Expression of S100P protein correlates with and contributes to the tumorigenic capacity of HeLa cervical carcinoma cells. Oncol Rep 14:575–582

    PubMed  CAS  Google Scholar 

  • Gibadulinova A, Oveckova I, Parkkila S, Pastorekova S, Pastorek J (2008) Key promoter elements involved in transcriptional activation of the cancer-related gene coding for S100P calcium-binding protein. Oncol Rep 20:391–396

    PubMed  CAS  Google Scholar 

  • Gribenko AV, Hopper JE, Makhatadze GI (2001) Molecular characterization and tissue distribution of a novel member of the S100 family of EF-hand proteins. Biochemistry 40:15538–15548

    Article  PubMed  CAS  Google Scholar 

  • Guerreiro Da Silva ID, Hu YF, Russo IH, Ao X, Salicioni AM, Yang X, Russo J (2000) S100P calcium-binding protein overexpression is associated with immortalization of human breast epithelial cells in vitro and early stages of breast cancer development in vivo. Int J Oncol 16:231–240

    PubMed  CAS  Google Scholar 

  • Hamada S, Satoh K, Hirota M, Fujibuchi W, Kanno A, Umino J, Ito H, Satoh A, Kikuta K, Kume K, Masamune A, Shimosegawa T (2009) Expression of the calcium-binding protein S100P is regulated by bone morphogenetic protein in pancreatic duct epithelial cell lines. Cancer Sci 100:103–110

    Article  PubMed  CAS  Google Scholar 

  • Hammacher A, Thompson EW, Williams ED (2005) Interleukin-6 is a potent inducer of S100P, which is up-regulated in androgen-refractory and metastatic prostate cancer. Int J Biochem Cell Biol 37:442–450

    Article  PubMed  CAS  Google Scholar 

  • He Z, Gao J, Wang Q, Liu M, Li Y, Li X, Tang H, Zheng J (2008) S100P contributes to chemosensitivity of human ovarian cancer cell line OVCAR3. Oncol Rep 20:325–332

    PubMed  CAS  Google Scholar 

  • Heizmann CW, Cox JA (1998) New perspectives on S100 proteins: a multi-functional Ca(2+)-, Zn(2+)- and Cu(2+)-binding protein family. Biometals 11:383–397

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:d1356–d1368

    Article  PubMed  CAS  Google Scholar 

  • Hsieh HL, Schafer BW, Sasaki N, Heizmann CW (2003) Expression analysis of S100 proteins and RAGE in human tumors using tissue microarrays. Biochem Biophys Res Commun 307:375–381

    Article  PubMed  CAS  Google Scholar 

  • Hsieh HL, Schafer BW, Weigle B, Heizmann CW (2004) S100 protein translocation in response to extracellular S100 is mediated by receptor for advanced glycation endproducts in human endothelial cells. Biochem Biophys Res Commun 316:949–959

    Article  PubMed  CAS  Google Scholar 

  • Jakubickova L, Barathova M, Pastorekova S, Pastorek J, Gibadulinova A (2005) Expression of S100P gene in cervical carcinoma cells is independent of E7 human papillomavirus oncogene. Acta Virol 49:133–137

    PubMed  CAS  Google Scholar 

  • Jiang F, Shults K, Flye L, Hashimoto Y, Van Der Meer R, Xie J, Kravtsov V, Price J, Head DR, Briggs RC (2005) S100P is selectively upregulated in tumor cell lines challenged with DNA cross-linking agents. Leuk Res 29:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Kassel O, Herrlich P (2007) Crosstalk between the glucocorticoid receptor and other transcription factors: molecular aspects. Mol Cell Endocrinol 275:13–29

    Article  PubMed  CAS  Google Scholar 

  • Kino T, Manoli I, Kelkar S, Wang Y, Su YA, Chrousos GP (2009) Glucocorticoid receptor (GR) beta has intrinsic, GRalpha-independent transcriptional activity. Biochem Biophys Res Commun 381:671–675

    Article  PubMed  CAS  Google Scholar 

  • Koltzscher M, Gerke V (2000) Identification of hydrophobic amino acid residues involved in the formation of S100P homodimers in vivo. Biochemistry 39:9533–9539

    Article  PubMed  CAS  Google Scholar 

  • Koltzscher M, Neumann C, Konig S, Gerke V (2003) Ca2+-dependent binding and activation of dormant ezrin by dimeric S100P. Mol Biol Cell 14:2372–2384

    Article  PubMed  CAS  Google Scholar 

  • Logsdon CD, Simeone DM, Binkley C, Arumugam T, Greenson JK, Giordano TJ, Misek DE, Kuick R, Hanash S (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657

    PubMed  CAS  Google Scholar 

  • Mandinova A, Atar D, Schafer BW, Spiess M, Aebi U, Heizmann CW (1998) Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. J Cell Sci 111(Pt 14):2043–2054

    PubMed  CAS  Google Scholar 

  • Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122

    Article  PubMed  CAS  Google Scholar 

  • Marenholz I, Lovering RC, Heizmann CW (2006) An update of the S100 nomenclature. Biochim Biophys Acta 1763:1282–1283

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7:915–926

    Article  PubMed  CAS  Google Scholar 

  • Mattern J, Buchler MW, Herr I (2007) Cell cycle arrest by glucocorticoids may protect normal tissue and solid tumors from cancer therapy. Cancer Biol Ther 6:1345–1354

    Article  PubMed  CAS  Google Scholar 

  • McCabe MT, Brandes JC, Vertino PM (2009) Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res 15:3927–3937

    Article  PubMed  CAS  Google Scholar 

  • Missiaglia E, Blaveri E, Terris B, Wang YH, Costello E, Neoptolemos JP, Crnogorac-Jurcevic T, Lemoine NR (2004) Analysis of gene expression in cancer cell lines identifies candidate markers for pancreatic tumorigenesis and metastasis. Int J Cancer 112:100–112

    Article  PubMed  CAS  Google Scholar 

  • Mousses S, Wagner U, Chen Y, Kim JW, Bubendorf L, Bittner M, Pretlow T, Elkahloun AG, Trepel JB, Kallioniemi OP (2001) Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling. Oncogene 20:6718–6723

    Article  PubMed  CAS  Google Scholar 

  • Mousses S, Bubendorf L, Wagner U, Hostetter G, Kononen J, Cornelison R, Goldberger N, Elkahloun AG, Willi N, Koivisto P, Ferhle W, Raffeld M, Sauter G, Kallioniemi OP (2002) Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res 62:1256–1260

    PubMed  CAS  Google Scholar 

  • Mueller A, Bachi T, Hochli M, Schafer BW, Heizmann CW (1999) Subcellular distribution of S100 proteins in tumor cells and their relocation in response to calcium activation. Histochem Cell Biol 111:453–459

    Article  PubMed  CAS  Google Scholar 

  • Namba T, Homan T, Nishimura T, Mima S, Hoshino T, Mizushima T (2009) Up-regulation of S100P expression by non-steroidal anti-inflammatory drugs and its role in anti-tumorigenic effects. J Biol Chem 284:4158–4167

    Article  PubMed  CAS  Google Scholar 

  • Ohuchida K, Mizumoto K, Egami T, Yamaguchi H, Fujii K, Konomi H, Nagai E, Yamaguchi K, Tsuneyoshi M, Tanaka M (2006) S100P is an early developmental marker of pancreatic carcinogenesis. Clin Cancer Res 12:5411–5416

    Article  PubMed  CAS  Google Scholar 

  • Parkkila S, Pan PW, Ward A, Gibadulinova A, Oveckova I, Pastorekova S, Pastorek J, Martinez AR, Helin HO, Isola J (2008) The calcium-binding protein S100P in normal and malignant human tissues. BMC Clin Pathol 8:2

    Article  PubMed  Google Scholar 

  • Rehbein G, Simm A, Hofmann HS, Silber RE, Bartling B (2008) Molecular regulation of S100P in human lung adenocarcinomas. Int J Mol Med 22:69–77

    PubMed  CAS  Google Scholar 

  • Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS (2006) Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 396:201–214

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Hitomi J (2002) S100P expression in human esophageal epithelial cells: human esophageal epithelial cells sequentially produce different S100 proteins in the process of differentiation. Anat Rec 267:60–69

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Fukushima N, Matsubayashi H, Goggins M (2004) Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene 23:1531–1538

    Article  PubMed  CAS  Google Scholar 

  • Schoneveld OJ, Gaemers IC, Lamers WH (2004) Mechanisms of glucocorticoid signalling. Biochim Biophys Acta 1680:114–128

    PubMed  CAS  Google Scholar 

  • Schor AP, Carvalho FM, Kemp C, Silva ID, Russo J (2006) S100P calcium-binding protein expression is associated with high-risk proliferative lesions of the breast. Oncol Rep 15:3–6

    PubMed  Google Scholar 

  • Song J, Shih IeM, Chan DW, Zhang Z (2009): Suppression of annexin A11 in ovarian cancer: implications in chemoresistance. Neoplasia 11:605–614, 1 p following 614

    Google Scholar 

  • Surowiak P, Maciejczyk A, Materna V, Drag-Zalesinska M, Wojnar A, Pudelko M, Kedzia W, Spaczynski M, Dietel M, Zabel M, Lage H (2007) Unfavourable prognostic significance of S100P expression in ovarian cancers. Histopathology 51:125–128

    Article  PubMed  CAS  Google Scholar 

  • Terris B, Blaveri E, Crnogorac-Jurcevic T, Jones M, Missiaglia E, Ruszniewski P, Sauvanet A, Lemoine NR (2002) Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol 160:1745–1754

    Article  PubMed  CAS  Google Scholar 

  • Tutar Y (2006) Dimerization and ion binding properties of S100P protein. Protein Pept Lett 13:301–306

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Zhang S, Fernig DG, Spiller D, Martin-Fernandez M, Zhang H, Ding Y, Rao Z, Rudland PS, Barraclough R (2004) Heterodimeric interaction and interfaces of S100A1 and S100P. Biochem J 382:375–383

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Platt-Higgins A, Carroll J, de Silva Rudland S, Winstanley J, Barraclough R, Rudland PS (2006) Induction of metastasis by S100P in a rat mammary model and its association with poor survival of breast cancer patients. Cancer Res 66:1199–1207

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Williamson M, Bott S, Brookman-Amissah N, Freeman A, Nariculam J, Hubank MJ, Ahmed A, Masters JR (2007) Hypomethylation of WNT5A, CRIP1 and S100P in prostate cancer. Oncogene 26:6560–6565

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, He Z, Gao J, Hu S, Huang M, Liu M, Zheng J, Tang H (2008) S100P sensitizes ovarian cancer cells to carboplatin and paclitaxel in vitro. Cancer Lett 272:277–284

    Article  PubMed  CAS  Google Scholar 

  • Whiteman HJ, Weeks ME, Dowen SE, Barry S, Timms JF, Lemoine NR, Crnogorac-Jurcevic T (2007) The role of S100P in the invasion of pancreatic cancer cells is mediated through cytoskeletal changes and regulation of cathepsin D. Cancer Res 67:8633–8642

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Wang Z, Ding Y, Wang G, Wang X, Gao F, Tang H, Barraclough R, Rudland PS, Rao Z (2002) Purification, crystallization and preliminary X-ray diffraction studies of a Ca2+-binding protein, human S100P. Acta Crystallogr D Biol Crystallogr 58:694–696

    Article  PubMed  Google Scholar 

  • Zhang H, Wang G, Ding Y, Wang Z, Barraclough R, Rudland PS, Fernig DG, Rao Z (2003) The crystal structure at 2A resolution of the Ca2+-binding protein S100P. J Mol Biol 325:785–794

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research of the authors is supported by the Slovak Scientific Grant Agency (VEGA 2/0143/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Gibadulinova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibadulinova, A., Tothova, V., Pastorek, J. et al. Transcriptional regulation and functional implication of S100P in cancer. Amino Acids 41, 885–892 (2011). https://doi.org/10.1007/s00726-010-0495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0495-5

Keywords

Navigation