Skip to main content

Advertisement

Log in

Tryptophan metabolism, from nutrition to potential therapeutic applications

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Tryptophan is an indispensable amino acid that should to be supplied by dietary protein. Apart from its incorporation into body proteins, tryptophan is the precursor for serotonin, an important neuromediator, and for kynurenine, an intermediary metabolite of a complex metabolic pathway ending with niacin, CO2, and kynurenic and xanthurenic acids. Tryptophan metabolism within different tissues is associated with numerous physiological functions. The liver regulates tryptophan homeostasis through degrading tryptophan in excess. Tryptophan degradation into kynurenine by immune cells plays a crucial role in the regulation of immune response during infections, inflammations and pregnancy. Serotonin is synthesized from tryptophan in the gut and also in the brain, where tryptophan availability is known to influence the sensitivity to mood disorders. In the present review, we discuss the major functions of tryptophan and its role in the regulation of growth, mood, behavior and immune responses with regard to the low availability of this amino acid and the competition between tissues and metabolic pathways for tryptophan utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Belladonna ML, Grohmann U, Guidetti P, Volpi C, Bianchi R, Fioretti MC, Schwarcz R, Fallarino F, Puccetti P (2006) Kynurenine pathway enzymes in dendritic cells initiate tolerogenesis in the absence of functional IDO. J Immunol 177:130–137

    PubMed  CAS  Google Scholar 

  • Bertazzo A, Ragazzi E, Biasiolo M, Costa CVL, Allegri G (2001) Enzyme activities involved in tryptophan metabolism along the kynurenine pathway in rabbits. Biochim Biophys Acta 1527:167–175

    PubMed  CAS  Google Scholar 

  • Bitzer-Quintero OK, Dávalos-Marín AJ, Ortiz GG, del Angel Meza AR, Torres-Mendoza BM, Robles RG, Chaparro Huerta V, Beas-Zárate C (2010) Antioxidant activity of tryptophan in rats under experimental endotoxic shock. Biomed Pharm 64:77–81

    Article  CAS  Google Scholar 

  • Bjork JM, Dougherty DM, Moeller FG, Swann AC (2000) Differential behavioural effects of plasma tryptophan depletion and loading in aggressive and nonaggressive men. Neuropsychopharmacology 22:357–369

    Article  PubMed  CAS  Google Scholar 

  • Blokland A, Lieben C, Deutz NEP (2002) Anxiogenic and depressive-like effects, but no cognitive deficits, after repeated moderate tryptophan depletion in the rat. J Psychopharmacol 16:39–49

    Article  PubMed  CAS  Google Scholar 

  • Boasso A, Vaccari M, Hryniewicz A, Fuchs D, Nacsa J, Cecchinato V, Andersson J, Franchini G, Shearer GM, Chougnet C (2007) Regulatory T-cell markers, indoleamine 2,3-dioxygenase, and virus levels in spleen and gut during progressive simian immunodeficiency virus infection. J Virol 81:11593–11603

    Article  PubMed  CAS  Google Scholar 

  • Booij L, Van der Does AJW, Riedel WJ (2003) Monoamine depletion in psychiatric and healthy populations: review. Mol Psychiatr 8:951–973

    Article  CAS  Google Scholar 

  • Brown RR, Ozaki YS, Datta P, Borden EC, Sondel PM, Malone DG (1991) Implications of interferon-induced tryptophan catabolism in auto-immune diseases and AIDS. Adv Exp Med Biol 294:425–435

    PubMed  CAS  Google Scholar 

  • Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PD, Price LH, Heninger GR, McDougle CJ (1998) Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 19:26–35

    Article  PubMed  CAS  Google Scholar 

  • Christen S, Peterhans E, Stocker R (1990) Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci USA 87:2506–2510

    Article  PubMed  CAS  Google Scholar 

  • Cvitkovic S, Bertolo RFP, Brunton JA, Pencharz PB, Ball RO (2004) Enteral tryptophan requirement determined by oxidation of gastrically or intravenously infused phenylalanine is not different from the parenteral requirement in neonatal piglets. Pediatr Res 55:630–636

    Article  PubMed  CAS  Google Scholar 

  • Denz H, Orth B, Weiss G, Herrmann R, Huber P, Wachter H, Fuchs D (1993) Weight loss in patients with hematological neoplasias is associated with immune system stimulation. Clin Invest 71:37–41

    Article  CAS  Google Scholar 

  • Eder K, Peganova S, Kluge H (2001) Studies on the tryptophan requirement of piglets. Arch Tierernahr 55:281–297

    Article  PubMed  CAS  Google Scholar 

  • Ettle T, Roth FX (2004) Specific dietary selection for tryptophan by the piglet. J Anim Sci 82:1115–1121

    PubMed  CAS  Google Scholar 

  • Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Firk C, Markus CR (2009) Mood and cortisol responses following tryptophan-rich hydrolyzed protein and acute stress in healthy subjects with high and low cognitive reactivity to depression. Clin Nutr 28:266–271

    Article  PubMed  CAS  Google Scholar 

  • Forrest CM, MacKay GM, Stoy N, Egerton M, Christofides J, Stone TW, Darlington LG (2004) Tryptophan loading induces oxidative stress. Free Radic Res 38:1167–1171

    Article  PubMed  CAS  Google Scholar 

  • Fusar-Poli P, Allen P, McGuire P, Placentino A, Cortesi M, Perez J (2006) Neuroimaging and electrophysiological studies of the effects of acute tryptophan depletion: a systematic review of the literature. Psychopharmacology 188:131–143

    Article  PubMed  CAS  Google Scholar 

  • Garlick PJ (2004) The nature of human hazard associated with excessive intake of amino acids. J Nutr 134:1633S–1639S

    PubMed  CAS  Google Scholar 

  • Garlick PJ, Clugston GA, Swick RW, Waterlow JC (1980) Diurnal pattern of protein and energy metabolism in man. Am J Clin Nutr 33:1983–1986

    PubMed  CAS  Google Scholar 

  • Gibbons JL, Barr GA, Bridger WH, Leibowitz SF (1979) Manipulations of dietary tryptophan: effects on mouse killing and brain serotonin in the rat. Brain Res 169:139–153

    Article  PubMed  CAS  Google Scholar 

  • Guzik AC, Matthews JO, Kerr BJ, Bidner TD, Southern LL (2006) Dietary tryptophan effects on plasma an salivary cortisol and meat quality in pigs. J Anim Sci 84:2251–2259

    Article  PubMed  CAS  Google Scholar 

  • Hayaishi O (1996) Utilization of superoxide anion by indoleamine oxygenase-catalyzed tryptophan and indoleamine oxidation. Adv Exp Med Biol 398:285–289

    Article  PubMed  CAS  Google Scholar 

  • Henry Y, Colléaux Y, Ganier P, Saligaut A, Jégo P (1992) Interactive effects of dietary levels of tryptophan and protein on voluntary feed intake and growth performance in pigs, in relation to plasma free amino acids and hypothalamic serotonin. J Anim Sci 70:1873–1887

    PubMed  CAS  Google Scholar 

  • Henry Y, Seve B, Mounier A, Ganier P (1996) Growth performance and brain neurotransmitters in pigs as affected by tryptophan, protein, and sex. J Anim Sci 74:2700–2710

    PubMed  CAS  Google Scholar 

  • Heseler K, Spekker K, Schmidt SK, MacKenzie CR, Däubener W (2008) Antimicrobial and immunoregulatory effects mediated by human lung cells: role of IFN-gamma-induced tryptophan degradation. FEMS Immunol Med Microbiol 52:273–281

    Article  PubMed  CAS  Google Scholar 

  • Highley JD, Linnoila M (1997) Low central nervous system serotonergic activity is trait-like and correlates with impulsive behavior. A nonhuman primate model investigating genetic and environmental influences on neurotransmission. Ann NY Acad Sci 836:39–56

    Article  Google Scholar 

  • Kaszaki J, Palásthy Z, Erczes D, Rácz A, Torday C, Varga G, Vécsei L, Boros M (2008) Kynurenic acid inhibits intestinal hypermotility and xanthine oxidase activity during experimental colon obstruction in dogs. Neurogastroenterol Motil 20:53–62

    PubMed  CAS  Google Scholar 

  • Kim CJ, Kovacs-Nolan JA, Yang C, Archbold T, Fan MZ, Min Y (2010) l-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis. J Nutr Biochem 21:468–475

    Article  PubMed  CAS  Google Scholar 

  • Knox WE, Auerback VH (1966) The hormonal control of tryptophan peroxidase in the rat. J Biol Chem 214:307–313

    Google Scholar 

  • Knox WE, Mehler AH (1951) The adaptive increase of the tryptophan peroxidase–oxidase system of the liver. Science 113:237–238

    Article  PubMed  CAS  Google Scholar 

  • Kohl C, Walch T, Huber R, Kemmler G, Neurauter G, Fuchs D, Sölder E, Schröcksnadel H, Spernel-Unterweger B (2005) Measurement of tryptophan, kynurenine and neopterin in women with and without postpartum blues. J Affect Disord 86:135–142

    Article  PubMed  CAS  Google Scholar 

  • Koopmans SJ, Ruis M, Dekker R, van Diepen H, Korte M, Mroz Z (2005) Surplus tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs. Physiol Behav 85:469–478

    Article  PubMed  CAS  Google Scholar 

  • Koopmans SJ, Guzik AC, van der Meulen J, Dekker R, Kogut J, Kerr BJ, Southern LL (2006) Effects of supplemental l-tryptophan on serotonin, cortisol, intestinal integrity, and behavior in weanling piglets. J Anim Sci 84:963–971

    PubMed  CAS  Google Scholar 

  • Kudo Y, Boyd CA, Spyropoulou I, Redman CWG, Takikawa O, Katsuki T, Hara T, Ohama K, Sargent IL (2004) Indoleamine 2,3-dioxygenase: distribution and function in the developing human placenta. J Reprod Immunol 61:87–98

    Article  PubMed  CAS  Google Scholar 

  • Kwidzinski E, Bechmann I (2007) IDO expression in the brain: a double-edged sword. J Mol Med 85:1351–1359

    Article  PubMed  Google Scholar 

  • Lazaris-Brunner G, Rafii M, Ball RO, Pencharz PB (1998) Tryptophan requirement in young adult women as determined by indicator amino acid oxidation with l-[13C]phenylalanine. Am J Clin Nutr 68:303–310

    PubMed  CAS  Google Scholar 

  • Le Floc’h N, Melchior D, Sève B (2008) Dietary tryptophan helps to preserve tryptophan homeostasis in pigs suffering from lung inflammation. J Anim Sci 86:3473–3479

    Article  PubMed  Google Scholar 

  • Leklem JE (1971) Quantitative aspects of tryptophan metabolism in humans and other species: a review. Am J Clin Nutr 24:659–672

    PubMed  CAS  Google Scholar 

  • Lieben CK, Blokland A, Westerink B, Deutz NE (2004) Acute tryptophan and serotonin depletion using an optimized tryptophan-free protein–carbohydrate mixture in the adult rat. Neurochem Int 44:9–16

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie CR, Hadding U (1998) Interferon-gamma-induced activation of indoleamine 2,3-dioxygenase in cord blood monocyte-derived macrophages inhibits the growth of group B streptococci. J Infect Dis 178:875–878

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie CR, Heseler K, Müller A, Däubener W (2007) Role of indoleamine 2,3-dioxygenase in antimicrobial defense and immuno-regulation: tryptophan depletion versus production of toxic kynurenines. Curr Drug Metab 8:237–244

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Verkerk R, Bonaccorso S, Ombelet W, Bosmans E, Scharpé S (2002) Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation. Life Sci 71:1837–1848

    Article  PubMed  CAS  Google Scholar 

  • Mahan DC, Shields RG (1998) Essential and nonessential amino acid composition of pigs from birth to 145 kilograms of body weight, and comparison to other studies. J Anim Sci 76:513–521

    PubMed  CAS  Google Scholar 

  • Markus CR (2008) Dietary amino acids and brain serotonin function; implications for stress-related affective changes. Neuromol Med 10:247–258

    Article  CAS  Google Scholar 

  • Markus CR, Olivier B, Panhuysen GE, Van Der Gugten J, Alles MS, Tuiten A, Westenberg HG, Fekkes D, Koppeschaar HF, de Haan EE (2000) The bovine protein alpha-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress. Am J Clin Nutr 71:1536–1544

    PubMed  CAS  Google Scholar 

  • Melchior D, Sève B, Le Floc’h N (2004) Chronic lung inflammation affects plasma amino acid concentrations in pigs. J Anim Sci 82:1091–1099

    PubMed  CAS  Google Scholar 

  • Mellor AL, Munn DH (2001) Tryptophan catabolism prevents maternal T cells from lethal anti-fetal immune responses. J Reprod Immunol 52:5–13

    Article  PubMed  CAS  Google Scholar 

  • Mellor AL, Baban B, Chandler PR, Manlapat A, Kahler DJ, Munn DH (2005) Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependant T cell regulatory functions via IFN type 1 signalling. J Immunol 175:5601–5605

    PubMed  CAS  Google Scholar 

  • Mendelsohn D, Riedel WJ, Sambeth A (2009) Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review. Neurosci Biobehav Rev 33:926–952

    Article  PubMed  CAS  Google Scholar 

  • Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S (2004) Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis 15:618–629

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, Lestage J, Verrier D, Mormede C, Kelley KW, Castanon N (2005) Bacille Calmette–Guérin inoculation induces chronic activation of peripheral and brain indoleamine 2,3-dioxygenase in mice. J Infect Dis 192:537–544

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz DS, Pinard G, Zuroff DC, Annable L, Young SN (2001) The effect of tryptophan on social interaction in everyday life: a placebo-controlled study. Neuropsychopharmacology 25:277–289

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189:1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Murray MF (2003) Tryptophan depletion and HIV infection: a metabolic link to pathogenesis. Lancet Infect Dis 3:644–652

    Article  PubMed  CAS  Google Scholar 

  • Naito J, Ishiguro I, Nagamura Y, Ogawa H (1989) Tryptophan 2,3-dioxygenase activity in rat skin. Arch Biochem Biophys 270:236–241

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, de Montigny C, Blier P, Diksic M (1997) Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci USA 94:5308–5313

    Article  PubMed  CAS  Google Scholar 

  • O’Connor JC, André C, Wang Y, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci 29:4200–4209

    Article  PubMed  Google Scholar 

  • Pardridge WM (1979) Tryptophan transport through the blood–brain barrier: in vivo measurement of free and albumin-bound amino acid. Life Sci 25:1519–1528

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM (1983) Brain metabolism: a perspective from the blood–brain barrier. Physiol Rev 63:1481–1535

    PubMed  CAS  Google Scholar 

  • Pardridge WM (1998) Blood–brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 23:635–644

    Article  PubMed  CAS  Google Scholar 

  • Pellegrin K, Neurauter G, Wirleitner B, Fleming AW, Peterson VM, Fuchs D (2005) Enhanced enzymatic degradation of tryptophan by indoleamine 2,3-dioxygenase contributes to the tryptophan-deficient state seen after major trauma. Shock 23:209–215

    PubMed  CAS  Google Scholar 

  • Pfefferkorn ER (1984) Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci USA 81:908–912

    Article  PubMed  CAS  Google Scholar 

  • Pihl RO, Young SN, Harden P, Plotnick S, Chamberlain B, Ervin FR (1995) Acute effect of altered tryptophan levels and alcohol on aggression in normal human males. Psychopharmacology 119:353–360

    Article  PubMed  CAS  Google Scholar 

  • Ponter AA, Cortamira NO, Sève B, Salter DN, Morgan LM (1994a) Intragastric tryptophan reduces glycemia after glucose, possibly via glucose-mediated insulinotropic polypeptide (GIP) in early weaned piglets. J Nutr 124:259–267

    PubMed  CAS  Google Scholar 

  • Ponter AA, Cortamira NO, Sève B, Salter DN, Morgan LM (1994b) The effects of energy source and tryptophan on the rate of protein synthesis and on hormones of the entero-insular axis in the piglet. Br J Nutr 71:661–674

    Article  PubMed  CAS  Google Scholar 

  • Popov A, Schultze JL (2008) IDO-expressing regulatory dendritic cells in cancer and chronic infection. J Mol Med 86:145–160

    Article  PubMed  CAS  Google Scholar 

  • Preston T, Slater C, McMillan DC, Falconer JS, Shenkin A, Fearon KCH (1998) Fibrinogen synthesis is elevated in fasting cancer patients with an acute phase response. J Nutr 128:1355–1360

    PubMed  CAS  Google Scholar 

  • Reeds PJ, Fjeld CR, Jahoor F (1994) Do the differences between the amino acid compositions of acute-phase and muscle proteins have a bearing on nitrogen loss in traumatic states? J Nutr 124:906–910

    PubMed  CAS  Google Scholar 

  • Roiser JP, Levy J, Fromm SJ, Wang H, Hasler G, Sahakian BJ, Drevets WC (2008) The effect of acute tryptophan depletion on the neural correlates of emotional processing in healthy volunteers. Neuropsychopharmacology 33:1992–2006

    Article  PubMed  CAS  Google Scholar 

  • Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GAW, Lowry CA (2006) Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 31:1–27

    Google Scholar 

  • Russo S, Kema IP, Fokkema R, Boon JC, Willemse PHB, De Vries EGE, Den Boer JA, Korf J (2003) Tryptophan as a link between psychopathology and somatic states. Psychosom Med 65:665–671

    Article  PubMed  CAS  Google Scholar 

  • Sambeth A, Blokland A, Harmer CJ, Kilkens TO, Nathan PJ, Porter RJ, Schmitt JA, Scholtissen B, Sobczak S, Young AH, Riedel WJ (2007) Sex differences in the effect of acute tryptophan depletion on declarative episodic memory: a pooled analysis of nine studies. Neurosci Biobehav Rev 31:516–529

    Article  PubMed  CAS  Google Scholar 

  • Sarwar G, Botting HG (1999) Liquid concentrations are lower in bioavailable tryptophan than powdered infant formulas, and tryptophan supplementation of formulas increases brain tryptophan and serotonin in rats. J Nutr 129:1692–1697

    PubMed  CAS  Google Scholar 

  • Sawadogo ML, Piva A, Panciroli A, Meola E, Mordenti A, Sève B (1997) Marginal efficiency of free or protected crystalline l-tryptophan for tryptophan and protein accretion in early-weaned pigs. J Anim Sci 75:1561–1568

    PubMed  CAS  Google Scholar 

  • Schröcksnadel K, Widner B, Bergant A, Neurauter G, Schennach H, Schröcksnadel H, Fuchs D (2003) Longitudinal study of tryptophan degradation during and after pregnancy. Life Sci 72:785–793

    Article  PubMed  Google Scholar 

  • Schröcksnadel K, Wirleitner B, Winkler C, Fuchs D (2006) Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 364:82–90

    Article  PubMed  Google Scholar 

  • Schutz G, Feigelson P (1971) Purification and properties of rat liver tryptophan oxygenase. J Biol Chem 247:5327–5332

    Google Scholar 

  • Scott GN, DuHadaway J, Pigott E, Ridge N, Prendergast GC, Muller AJ, Mandik-Nayak L (2009) The immunoregulatory enzyme IDO paradoxically drives B cell-mediated autoimmunity. J Immunol 182:7509–7517

    Article  PubMed  CAS  Google Scholar 

  • Sharma MD, Baban B, Chandler P, Hou D-Y, Singh N, Yagita H, Azuma M, Blazar BR, Mellor AL, Munn DH (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature tregs via indoleamine 2,3-dioxygenase. J Clin Invest 17:2570–2582

    Article  Google Scholar 

  • Shea MM, Mench JA, Thomas OP (1990) The effect of dietary tryptophan on aggressive behavior in developing and mature broiler breeder males. Poult Sci 69:1664–1669

    PubMed  CAS  Google Scholar 

  • Shimizu T, Nomiyama S, Hirata F, Hayaishi O (1978) Indoleamine 2,3 dioxygenase. Purification and some properties. J Biol Chem 253:623–632

    Google Scholar 

  • Silber BY, Schmitt JAJ (2010) Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev 34:387–407

    Article  PubMed  CAS  Google Scholar 

  • Silva NM, Rodrigues CV, Santoro MM, Reis LF, Alvarez-Leite JI, Gazzinelli RT (2002) Expression of indoleamine 2,3-dioxygenase, tryptophan degradation, and kynurenine formation during in vivo infection with Toxoplasma gondii: induction by endogenous gamma interferon and requirement of interferon regulatory factor 1. Infect Immun 70:859–868

    Article  PubMed  CAS  Google Scholar 

  • Smith SA, Pogson CI (1980) The metabolism of l-tryptophan by isolated rat liver cells. Effect of albumin binding and amino acid competition on oxidation of tryptophan by tryptophan 2,3-dioxygenase. Biochem J 186:977–986

    PubMed  CAS  Google Scholar 

  • Smith AJ, Stone TW, Smith RA (2007) Neurotoxicity of tryptophan metabolites. Biochem Soc Trans 35:1287–1289

    Article  PubMed  CAS  Google Scholar 

  • Takikawa O, Yoshida R, Kido R, Hayaishi O (1986) Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J Biol Chem 261:3648–3653

    PubMed  CAS  Google Scholar 

  • Tatsumi K, Higuchi T, Fujiwara H, Nakayama T, Egawa H, Itoh K, Fujii S, Fujita J (2010) Induction of tryptophan 2,3-dioxygenase in the mouse endometrium during implantation. Biochem Biophys Res Commun 274:166–170

    Article  Google Scholar 

  • Thomson J, Ashcroft RankinH, GW YatesCM, McQueen JK, Cummings SW (1982) The treatment of depression in general practice: a comparison of l-tryptophan, amitriptyline, and a combination of l-tryptophan and amitriptyline with placebo. Psychol Med 12:741–751

    Article  PubMed  CAS  Google Scholar 

  • Van Der Schoor SR, Reeds PJ, Stoll B, Henry JF, Rosenberger JR, Burrin DG, Van Goudoever JB (2002) The high metabolic cost of a functional gut. Gastroenterology 123:1931–1940

    Article  Google Scholar 

  • Walderhaug E, Magnusson A, Neumeister A, Lappalainen J, Lunde H, Refsum H, Landrø NI (2007) Interactive effects of sex and 5-HTTLPR on mood and impulsivity during tryptophan depletion in healthy people. Biol Psychiatry 62:593–599

    Article  PubMed  CAS  Google Scholar 

  • Widner B, Ledochowski M, Fuchs D (2000) Interferon-gamma-induced tryptophan degradation: neuropsychiatric and immunological consequences. Cur Drugs Metab 1:193–204

    Article  CAS  Google Scholar 

  • Wolf H (1974) Studies on tryptophan metabolism in man. Scand J Clin Lab Invest 136:1–186

    CAS  Google Scholar 

  • Wolf AM, Wolf D, Rumpold H, Moschen AR, Kaser A, Obrist P, Fuchs D, Brandacher G, Winkler C, Geboes K, Rutgeerts P, Tilg H (2004) Overexpression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease. Clin Immunol 113:47–55

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Hayaishi O (1967) Tryptophan pyrrolase of rabbit intestine. d and l-tryptophan-cleaving enzyme or enzymes. J Biol Chem 242:5260–5266

    PubMed  CAS  Google Scholar 

  • Yamazaki F, Kuroiwa T, Takikawa O, Kido R (1985) Human indolylamine 2,3-dioxygenase. Its tissue distribution and characterization of the placental enzyme. Biochem J 230:635–638

    PubMed  CAS  Google Scholar 

  • Young SN, Leyton M (2002) The role of serotonin in human mood and social interaction. Insight from altered tryptophan levels. Pharmacol Biochem Behav 71:857–865

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Yin J, Li D, Zhou X, Li X (2007) Tryptophan enhances ghrelin expression and secretion associated with increased food intake and weight gain in weanling pigs. Dom Anim Endocrinol 33:47–61

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Le Floc’h.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Floc’h, N., Otten, W. & Merlot, E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41, 1195–1205 (2011). https://doi.org/10.1007/s00726-010-0752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0752-7

Keywords

Navigation