Skip to main content

Advertisement

Log in

Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A soluble hydrogenase from Allochromatium vinosum was purified. It consisted of a large (M r = 52 kDa) and a small (M r = 23 kDa) subunit. The genes encoding for both subunits were identified. They belong to an open reading frame where they are preceded by three more genes. A DNA fragment containing all five genes was cloned and sequenced. The deduced amino acid sequences of the products characterized the complex as a member of the HoxEFUYH type of [NiFe] hydrogenases. Detailed sequence analyses revealed binding sites for eight Fe–S clusters, three [2Fe–2S] clusters and five [4Fe–4S] clusters, six of which are also present in homologous subunits of [FeFe] hydrogenases and NADH:ubiquione oxidoreductases (complex I). This makes the HoxEFUYH type of hydrogenases the one that is evolutionary closest to complex I. The relative positions of six of the potential Fe–S clusters are predicted on the basis of the X-ray structures of the Clostridium pasteurianum [FeFe] hydrogenase I and the hydrophilic domain of complex I from Thermus thermophilus. Although the HoxF subunit contains binding sites for flavin mononucleotide and NAD(H), cell-free extracts of A. vinosum did not catalyse a H2-dependent reduction of NAD+. Only the hydrogenase module (HoxYH) could be purified. Its electron paramagnetic resonance (EPR) and IR spectral properties showed the presence of a Ni–Fe active site and a [4Fe–4S] cluster. Its activity was sensitive to carbon monoxide. No EPR signals from a light-sensitive Nia–C* state could be observed. This study presents the first IR spectroscopic data on the HoxYH module of a HoxEFUYH type of [NiFe] hydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BV:

Benzyl viologen

DCIP:

2,6-Dichlorophenol-indophenol

EPR:

Electron paramagnetic resonance

FMN:

Flavin mononucleotide

FPLC:

Fast protein liquid chromatography

KPi:

Potassium phosphate (50 mM)

MBH:

Membrane-bound hydrogenase

MV:

Methyl viologen

PAGE:

Polyacrylamide gel electrophoresis

SDS:

Sodium dodecyl sulfate

SH:

Soluble hydrogenase

Tris:

Tris(hydroxymethyl)aminomethane–HCl buffer (50 mM)

References

  1. Adams MW (1990) Biochim Biophys Acta 1020:115–145

    PubMed  CAS  Google Scholar 

  2. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853–1858

    PubMed  CAS  Google Scholar 

  3. Nicolet Y, Piras C, Legrand P, Hatchikian EC, Fontecilla-Camps JC (1999) Struct Fold Des 7:13–23

    CAS  Google Scholar 

  4. Van der Spek TM, Arendsen AF, Happe RP, Yun S, Bagley KA, Stufkens DJ, Hagen WR, Albracht SPJ (1996) Eur J Biochem 237:629–634

    PubMed  Google Scholar 

  5. Pierik AJ, Hulstein M, Hagen WR, Albracht SPJ (1998) Eur J Biochem 258:572–578

    PubMed  CAS  Google Scholar 

  6. Albracht SPJ, Roseboom W, Hatchikian EC (2006) J Biol Inorg Chem 11:88–101

    PubMed  CAS  Google Scholar 

  7. Roseboom W, De Lacey AL, Fernandez VM, Hatchikian EC, Albracht SPJ (2006) J Biol Inorg Chem 11:102–118

    PubMed  CAS  Google Scholar 

  8. Albracht SPJ (1994) Biochim Biophys Acta 1188:167–204

    PubMed  Google Scholar 

  9. Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Nature 373:580–587

    PubMed  CAS  Google Scholar 

  10. Volbeda A, Garcia E, Piras C, De Lacey AL, Fernandez VM, Hatchikian EC, Frey M, Fontecilla-Camps JC (1996) J Am Chem Soc 118:12989–12996

    CAS  Google Scholar 

  11. Bagley KA, Van Garderen CJ, Chen M, Duin EC, Albracht SPJ, Woodruff WH (1994) Biochemistry 33:9229–9236

    PubMed  CAS  Google Scholar 

  12. Bagley KA, Duin EC, Roseboom W, Albracht SPJ, Woodruff WH (1995) Biochemistry 34:5527–5535

    PubMed  CAS  Google Scholar 

  13. Happe RP, Roseboom W, Pierik AJ, Albracht SPJ, Bagley KA (1997) Nature 385:126

    PubMed  CAS  Google Scholar 

  14. Pierik AJ, Roseboom W, Happe RP, Bagley KA, Albracht SPJ (1999) J Biol Chem 274:3331–3337

    PubMed  CAS  Google Scholar 

  15. Lyon EJ, Shima S, Böcher R, Thauer RK, Grevels FW, Bill E, Roseboom W, Albracht SPJ (2004) J Am Chem Soc 126:14239–14248

    PubMed  CAS  Google Scholar 

  16. Shima S, Lyon EJ, Thauer RK, Mienert B, Bill E (2005) J Am Chem Soc 127:10430–10435

    PubMed  CAS  Google Scholar 

  17. Cammack R, Frey M, Robson R (2001) Hydrogen as a fuel. Learning from nature. Taylor & Francis, London

    Google Scholar 

  18. Vignais PM, Colbeau A (2004) Curr Issues Mol Biol 6:159–188

    PubMed  CAS  Google Scholar 

  19. De Lacey AL, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC, Fernandez VM (1997) J Am Chem Soc 119:7181–7189

    Google Scholar 

  20. Rousset M, Montet Y, Guigliarelli B, Forget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC (1998) Proc Natl Acad Sci USA 95:11625–11630

    PubMed  CAS  Google Scholar 

  21. Garcin E, Vernède X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) Struct Fold Des 7:557–566

    CAS  Google Scholar 

  22. Matias PM, Soares CM, Saraiva LM, Coelho R, Morais J, Le Gall J, Carrondo MA (2001) J Biol Inorg Chem 6:63–81

    PubMed  CAS  Google Scholar 

  23. Fernandez VM, Hatchikian EC, Cammack R (1985) Biochim Biophys Acta 832:69–79

    CAS  Google Scholar 

  24. Fernandez VM, Rao KK, Fernandez MA, Cammack R (1986) Biochimie 68:43–48

    Article  PubMed  CAS  Google Scholar 

  25. Kurkin S, George SJ, Thorneley RNF, Albracht SPJ (2004) Biochemistry 43:6820–6831

    PubMed  CAS  Google Scholar 

  26. Lamle SE, Albracht SPJ, Armstrong FA (2004) J Am Chem Soc 126:14899–14909

    PubMed  CAS  Google Scholar 

  27. Lamle SE, Albracht SPJ, Armstrong FA (2005) J Am Chem Soc 127:6595–6604

    PubMed  CAS  Google Scholar 

  28. Bleijlevens B, Faber BW, Albracht SPJ (2001) J Biol Inorg Chem 6:763–769

    PubMed  CAS  Google Scholar 

  29. Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SPJ, Garcin E, Rousset M, Fontecilla-Camps JC (2005) J Biol Inorg Chem 10:239–249

    PubMed  CAS  Google Scholar 

  30. Ogata H, Hirota S, Nakahara A, Komori H, Shibata N, Kato T, Kano K, Higuchi Y (2005) Structure 13:1635–1642

    PubMed  CAS  Google Scholar 

  31. Ackrell BA, Asato RN, Mower HF (1966) J Bacteriol 92:828–838

    PubMed  CAS  Google Scholar 

  32. Rossmann R, Sauter M, Lottspeich F, Böck A (1994) Eur J Biochem 220:377–384

    PubMed  CAS  Google Scholar 

  33. Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P, Guest JR (1997) Microbiology 143:3633–3647

    Article  PubMed  CAS  Google Scholar 

  34. Robson R (2001) In: Cammack R, Frey M, Robson R (eds) Hydrogen as a fuel. Learning from nature. Taylor & Francis, London, pp 9–32

  35. Buchanan BB, Bachofen R, Arnon DI (1964) Biochemistry 52:839–847

    CAS  Google Scholar 

  36. Weaver P, Tinker K, Valentine RC (1965) Biochem Biophys Res Commun 21:195–201

    PubMed  CAS  Google Scholar 

  37. Buchanan BB, Bachofen R (1968) Biochim Biophys Acta 162:607–610

    PubMed  CAS  Google Scholar 

  38. Feigenblum E, Krasna AI (1970) Biochim Biophys Acta 198:157–164

    PubMed  CAS  Google Scholar 

  39. Llama MJ, Serra JL, Rao KK, Hall DO (1981) Eur J Biochem 114:89–96

    Article  PubMed  CAS  Google Scholar 

  40. George SJ, Kurkin S, Thorneley RNF, Albracht SPJ (2004) Biochemistry 43:6808–6819

    PubMed  CAS  Google Scholar 

  41. Surerus KK, Chen M, van der Zwaan JW, Rusnak FM, Kolk M, Duin EC, Albracht SPJ, Münck E (1994) Biochemistry 33:4980–4993

    PubMed  CAS  Google Scholar 

  42. Gu ZJ, Dong J, Allan CB, Choudhury SB, Franco R, Moura JJG, LeGall J, Przybyla AE, Roseboom W, Albracht SPJ, Axley MJ, Scott RA, Maroney MJ (1996) J Am Chem Soc 118:11155–11165

    CAS  Google Scholar 

  43. Davidson G, Choudhury SB, Gu Z, Bose K, Roseboom W, Albracht SPJ, Maroney MJ (2000) Biochemistry 39:7468–7479

    PubMed  CAS  Google Scholar 

  44. Schmitz O, Boison G, Hilscher R, Hundeshagen B, Zimmer W, Lottspeich F, Bothe H (1995) Eur J Biochem 233:266–276

    PubMed  CAS  Google Scholar 

  45. Boison G, Bothe H, Hansel A, Lindblad P (1999) FEMS Microbiol Lett 174:159–165

    CAS  Google Scholar 

  46. Schmitz O, Boison G, Salzmann H, Bothe H, Schutz K, Wang SH, Happe T (2002) Biochim Biophys Acta 1554:66–74

    PubMed  CAS  Google Scholar 

  47. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Microbiol Mol Biol Rev 66:1–20

    PubMed  CAS  Google Scholar 

  48. Schutz K, Happe T, Troshina O, Lindblad P, Leitao E, Oliveira P, Tamagnini P (2004) Planta 218:350–359

    PubMed  Google Scholar 

  49. Rákhely G, Kovács AT, Maróti G, Fodor BD, Csanádi G, Latinovics D, Kovács KL (2004) Appl Environ Microbiol 70:722–728

    PubMed  Google Scholar 

  50. Hinchliffe P, Sazanov LA (2005) Science 309:771–774

    PubMed  CAS  Google Scholar 

  51. Sazanov LA, Hinchliffe P (2006) Science 311:1430–1436

    PubMed  CAS  Google Scholar 

  52. Hinchliffe P, Carroll J, Sazanov LA (2006) Biochemistry 45:4413–4420

    PubMed  CAS  Google Scholar 

  53. Van Heerikhuizen H, Albracht SPJ, Slater EC, van Rheenen PS (1981) Biochim Biophys Acta 657:26–39

    PubMed  Google Scholar 

  54. Hendley DD (1955) J Bacteriol 70:625–634

    PubMed  CAS  Google Scholar 

  55. Albracht SPJ, Kalkman ML, Slater EC (1983) Biochim Biophys Acta 1983:309–316

    Google Scholar 

  56. Kovács KL, Tigyi G, Alfonz H (1985) Prep Biochem 15:321–334

    PubMed  Google Scholar 

  57. Coremans JMCC, van der Zwaan JW, Albracht SPJ (1992) Biochim Biophys Acta 1119:157–168

    PubMed  CAS  Google Scholar 

  58. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  59. Coremans JMCC, Van der Zwaan JW, Albracht SPJ (1989) Biochim Biophys Acta 997:256–267

    CAS  Google Scholar 

  60. Studier FW (1973) J Mol Biol 79:237–248

    PubMed  CAS  Google Scholar 

  61. Laemmli UK (1970) Nature 227:680–685

    PubMed  CAS  Google Scholar 

  62. Jacobson FS, Daniels L, Fox JA, Walsh CT, Orme-Johnson WH (1982) J Biol Chem 257:3385–3388

    PubMed  CAS  Google Scholar 

  63. Adams MW, Hall DO (1979) Arch Biochem Biophys 195:288–299

    PubMed  CAS  Google Scholar 

  64. Matsudaira P (1987) J Biol Chem 262:10035–10038

    PubMed  CAS  Google Scholar 

  65. Sambrook J, Maniatis T, Fritsch EF (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  66. Happe RP, Roseboom W, Albracht SPJ (1999) Eur J Biochem 259:602–608

    PubMed  CAS  Google Scholar 

  67. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    PubMed  CAS  Google Scholar 

  68. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) Nucleic Acids Res 25:4876–4882

    PubMed  CAS  Google Scholar 

  69. Ohnishi T, Blum H, Galante YM, Hatefi Y (1981) J Biol Chem 256:9216–9220

    PubMed  CAS  Google Scholar 

  70. Ragan CI, Galante YM, Hatefi Y, Ohnishi T (1982) Biochemistry 21:590–594

    PubMed  CAS  Google Scholar 

  71. Ohnishi T, Ragan CI, Hatefi Y (1985) J Biol Chem 260:2782–2788

    PubMed  CAS  Google Scholar 

  72. Pilkington SJ, Skehel JM, Gennis RB, Walker JE (1991) Biochemistry 30:2166–2175

    PubMed  CAS  Google Scholar 

  73. Bottoms CA, Smith PE, Tanner JJ (2002) Protein Sci 11:2125–2137

    PubMed  CAS  Google Scholar 

  74. Albracht SPJ, De Jong AMP (1997) Biochim Biophys Acta 1318:92–106

    PubMed  CAS  Google Scholar 

  75. Arizmendi JM, Runswick MJ, Skehel JM, Walker JE (1992) FEBS Lett 301:237–242

    PubMed  CAS  Google Scholar 

  76. Fearnley IM, Walker JE (1992) Biochim Biophys Acta 1140:105–134

    PubMed  CAS  Google Scholar 

  77. Albracht SPJ, Hedderich R (2000) FEBS Lett 485:1–6

    PubMed  CAS  Google Scholar 

  78. Van der Linden E, Faber BW, Bleijlevens B, Burgdorf T, Bernhard M, Friedrich B, Albracht SPJ (2004) Eur J Biochem 271:801–808

    PubMed  Google Scholar 

  79. Van der Linden E, Burgdorf T, De Lacey AL, Buhrke T, Scholte M, Fernandez VM, Friedrich B, Albracht SPJ (2006) J Biol Inorg Chem 11:247–260

    PubMed  Google Scholar 

  80. Albracht SPJ, Van der Linden E, Faber BW (2003) Biochim Biophys Acta 1557:41–49

    PubMed  CAS  Google Scholar 

  81. Van Belzen R, Albracht SPJ (1989) Biochim Biophys Acta 974:311–320

    PubMed  Google Scholar 

  82. Burgdorf T, Van der Linden E, Bernhard M, Yin QY, Back JW, Hartog AF, Muijsers AO, de Koster CG, Albracht SPJ, Friedrich B (2005) J Bacteriol 187:3122–3132

    PubMed  CAS  Google Scholar 

  83. Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC (1997) Nat Struct Biol 4:523–526

    PubMed  CAS  Google Scholar 

  84. Higuchi Y, Yagi T, Yasuoka N (1997) Structure 5:1671–1680

    PubMed  CAS  Google Scholar 

  85. Higuchi Y, Ogata H, Miki K, Yasuoka N, Yagi T (1999) Struct Fold Des 7:549–556

    CAS  Google Scholar 

  86. Ogata H, Mizoguchi Y, Mizuno N, Miki K, Adachi S, Yasuoka N, Yagi T, Yamauchi O, Hirota S, Higuchi Y (2002) J Am Chem Soc 124:11628–11635

    PubMed  CAS  Google Scholar 

  87. Volbeda A, Montet Y, Vernède X, Hatchikian EC, Fontecilla-Camps JC (2002) Int J Hydrogen Energy 27:1449–1461

    CAS  Google Scholar 

  88. Strekas T, Antanaitis BC, Krasna AI (1980) Biochim Biophys Acta 616:1–9

    PubMed  CAS  Google Scholar 

  89. Vänngård T (1972) In: Swartz HM, Bolton JR, Borg DC (eds) Biological applications of electron spin resonance. Wiley, New York, pp 411–447

  90. Coremans JMCC, van Garderen CJ, Albracht SPJ (1992) Biochim Biophys Acta 1119:148–156

    PubMed  CAS  Google Scholar 

  91. Duin EC (1996) PhD thesis, University of Amsterdam

  92. Schneider K, Cammack R, Schlegel HG (1984) Eur J Biochem 142:75–84

    PubMed  CAS  Google Scholar 

  93. Schneider K, Schlegel HG, Jochim K (1984) Eur J Biochem 138:533–541

    PubMed  CAS  Google Scholar 

  94. Serebryakova LT, Medina M, Zorin NA, Gogotov IN, Cammack R (1996) FEBS Lett 383:79–82

    PubMed  CAS  Google Scholar 

  95. Galante YM, Hatefi Y (1979) Arch Biochem Biophys 192:559–568

    PubMed  CAS  Google Scholar 

  96. Kunkel A, Vorholt JA, Thauer RK, Hedderich R (1998) Eur J Biochem 252:467–476

    PubMed  CAS  Google Scholar 

  97. Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Proc Natl Acad Sci USA 99:5632–5637

    PubMed  CAS  Google Scholar 

  98. Kurkin S, Meuer J, Koch J, Hedderich R, Albracht SPJ (2002) Eur J Biochem 269:6101–6111

    PubMed  CAS  Google Scholar 

  99. Forzi L, Koch J, Guss AM, Radosevich CG, Metcalf WW, Hedderich R (2005) FEBS J 272:4741–4753

    PubMed  CAS  Google Scholar 

  100. Orme-Johnson NR, Hansen RE, Beinert H (1974) J Biol Chem 249:1922–1927

    PubMed  CAS  Google Scholar 

  101. Kyritsis P, Hatzfeld OM, Link TA, Moulis JM (1998) J Biol Chem 273:15404–15411

    PubMed  CAS  Google Scholar 

  102. Kirby TW, Lancaster JR Jr, Fridovich I (1981) Arch Biochem Biophys 210:140–148

    PubMed  CAS  Google Scholar 

  103. Renault JP, Verchère-Béaur C, Morgenstern-Badarau I, Yamakura F, Gerloch M (2000) Inorg Chem 39:2666–2675

    PubMed  CAS  Google Scholar 

  104. Gratepanche S, Ménage S, Touati D, Wintjens R, Delplace P, Fontecave M, Masset A, Camus D, Dive D (2002) Mol Biochem Parasitol 120:237–246

    PubMed  CAS  Google Scholar 

  105. Kerfeld CA, Yoshida S, Tran KT, Yeates TO, Cascio D, Bottin H, Berthomieu C, Sugiura M, Boussac A (2003) J Biol Inorg Chem 8:707–714

    PubMed  CAS  Google Scholar 

  106. Albracht SPJ (2001) In: Cammack R, Frey M, Robson R (eds) Hydrogen as a fuel. Learning from nature. Taylor & Francis, London, pp 110–158

  107. Bleijlevens B, van Broekhuizen FA, De Lacey AL, Roseboom W, Fernandez VM, Albracht SPJ (2004) J Biol Inorg Chem 9:743–752

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

M.L. was supported by grants from the National Natural Science Foundation of China (30470395) and the National 863 Project of China (2002AA515030). S.P.J.A. thanks the Netherlands Organization for Scientific Research (NWO), Division of Chemical Sciences, for support. We thank A.O.M. Muijsers for the N-terminal sequencing work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minnan Long or Simon P. J. Albracht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, M., Liu, J., Chen, Z. et al. Characterization of a HoxEFUYH type of [NiFe] hydrogenase from Allochromatium vinosum and some EPR and IR properties of the hydrogenase module. J Biol Inorg Chem 12, 62–78 (2007). https://doi.org/10.1007/s00775-006-0162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-006-0162-1

Keywords

Navigation