Skip to main content
Log in

Effect of metal binding and posttranslational lysine carboxylation on the activity of recombinant hydantoinase

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Bacterial hydantoinase possesses a binuclear metal center in which two metal ions are bridged by a posttranslationally carboxylated lysine. How the carboxylated lysine and metal binding affect the activity of hydantoinase was investigated. A significant amount of iron was always found in Agrobacterium radiobacter hydantoinase purified from unsupplemented cobalt-, manganese-, or zinc-amended Escherichia coli cell cultures. A titration curve for the reactivation of apohydantoinase with cobalt indicates that the first metal was preferentially bound but did not give any enzyme activity until the second metal was also attached to the hydantoinase. The pH profiles of the metal-reconstituted hydantoinase were dependent on the specific metal ion bound to the active site, indicating a direct involvement of metal in catalysis. Mutation of the metal binding site residues, H57A, H59A, K148A, H181A, H237A, and D313A, completely abolished hydantoinase activity but preserved about half of the metal content, except for K148A, which lost both metals in its active site. However, the activity of K148A could be chemically rescued by short-chain carboxylic acids in the presence of cobalt, indicating that the carboxylated lysine was needed to coordinate the binuclear ion within the active site of hydantoinase. The mutant D313E enzyme was also active but resulted in a pH profile different from that of wild-type hydantoinase. A mechanism for hydantoinase involving metal, carboxylated K148, and D313 was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bernheim F, Bernheim MLC (1946) J Biol Chem 163:683–685

    CAS  Google Scholar 

  2. Eadie G, Bernheim F, Bernheim MLC (1949) J Biol Chem 181:449–458

    PubMed  CAS  Google Scholar 

  3. Wallach DP, Grisolia S (1957) J Biol Chem 226:277–288

    PubMed  CAS  Google Scholar 

  4. Yang YS, Ramaswamy S, Jakoby WB (1993) J Biol Chem 268:10870–10875

    PubMed  CAS  Google Scholar 

  5. Syldatk C, May O, Altenbuchner J, Mattes R, Siemann M (1999) Appl Microbiol Biotechnol 51:293–309

    Article  PubMed  CAS  Google Scholar 

  6. Vogels GD, Van der Drift C (1976) Bacteriol Rev 40:403–468

    PubMed  CAS  Google Scholar 

  7. Schoemaker HE, Mink D, Wubbolts MG (2003) Science 299:1694–1697

    Article  PubMed  CAS  Google Scholar 

  8. Altenbuchner J, Siemann-Herzberg M, Syldatk C (2001) Curr Opin Biotechnol 12:559–563

    Article  PubMed  CAS  Google Scholar 

  9. May O, Nguyen PT, Arnold FH (2000) Nat Biotechnol 18:317–320

    Article  PubMed  CAS  Google Scholar 

  10. Holm L, Sander C (1997) Proteins 28:72–82

    Article  PubMed  CAS  Google Scholar 

  11. Thoden JB, Phillips GN Jr, Neal TM, Raushel FM, Holden HM (2001) Biochemistry 40:6989–6997

    Article  PubMed  CAS  Google Scholar 

  12. Jabri E, Carr MB, Hausinger RP, Karplus PA (1995) Science 268:998–1004

    Article  PubMed  CAS  Google Scholar 

  13. Benning MM, Kuo JM, Raushel FM, Holden HM (1995) Biochemistry 34:7973–7978

    Article  PubMed  CAS  Google Scholar 

  14. Xu Z, Liu Y, Yang Y, Jiang W, Arnold E, Ding J (2003) J Bacteriol 185:4038–4049

    Article  PubMed  CAS  Google Scholar 

  15. Abendroth J, Niefind K, Schomburg D (2002) J Mol Biol 320:143–156

    Article  PubMed  CAS  Google Scholar 

  16. Cheon YH, Kim HS, Han KH, Abendroth J, Niefind K, Schomburg D, Wang J, Kim Y (2002) Biochemistry 41:9410–9417

    Article  PubMed  CAS  Google Scholar 

  17. Radha Kishan KV, Vohra RM, Ganesan K, Agrawal V, Sharma VM, Sharma R (2005) J Mol Biol 347:95–105

    Article  PubMed  CAS  Google Scholar 

  18. Huang CY, Chao YP, Yang YS (2003) Protein Expr Purif 30:134–139

    Article  PubMed  CAS  Google Scholar 

  19. Huang CY, Yang YS (2002) Biochem Biophys Res Commun 297:1027–1032

    Article  PubMed  CAS  Google Scholar 

  20. Cleland WW (1979) Methods Enzymol 63:103–138

    Article  PubMed  CAS  Google Scholar 

  21. Ireton GC, McDermott G, Black ME, Stoddard BL (2002) J Mol Biol 315:687–697

    Article  PubMed  CAS  Google Scholar 

  22. D’Souza VM, Holz RC (1999) Biochemistry 38:11079–11085

    Article  PubMed  CAS  Google Scholar 

  23. Becker A, Schlichting I, Kabsch W, Groche D, Schultz S, Wagner AF (1998) Nat Struct Biol 5:1053–1058

    Article  PubMed  CAS  Google Scholar 

  24. Faraldo-Gomez JD, Sansom MS (2003) Nat Rev Mol Cell Biol 4:105–116

    Article  PubMed  CAS  Google Scholar 

  25. Washabaugh MW, Collins KD (1984) J Biol Chem 259:3293–3298

    PubMed  CAS  Google Scholar 

  26. Seibert CM, Raushel FM (2005) Biochemistry 44:6383–6391

    Article  PubMed  CAS  Google Scholar 

  27. Gerlt JA, Raushel FM (2003) Curr Opin Chem Biol 7:252–264

    Article  PubMed  CAS  Google Scholar 

  28. Kim GJ, Kim HS (1998) Biochem J 330:295–302

    PubMed  CAS  Google Scholar 

  29. Hausinger RP (2003) Nat Struct Biol 10:234–236

    Article  PubMed  CAS  Google Scholar 

  30. Kuchar J, Hausinger RP (2004) Chem Rev 104:509–525

    Article  PubMed  CAS  Google Scholar 

  31. Jozic D, Kaiser JT, Huber R, Bode W, Maskos K (2003) J Mol Biol 332:243–256

    Article  PubMed  CAS  Google Scholar 

  32. Kuo JM, Chae MY, Raushel FM (1997) Biochemistry 36:1982–1988

    Article  PubMed  CAS  Google Scholar 

  33. Smith HB, Hartman FC (1991) Biochemistry 30:5172–5177

    Article  PubMed  CAS  Google Scholar 

  34. Gojkovic Z, Rislund L, Andersen B, Sandrini MP, Cook PF, Schnackerz KD, Piskur J (2003) Nucleic Acids Res 31:1683–1692

    Article  PubMed  CAS  Google Scholar 

  35. Gerlt JA, Babbitt PC (2001) Annu Rev Biochem 70:209–246

    Article  PubMed  CAS  Google Scholar 

  36. Shim H, Raushel FM (2000) Biochemistry 39:7357–7364

    Article  PubMed  CAS  Google Scholar 

  37. Christianson DW, Cox JD (1999) Annu Rev Biochem 68:33–57

    Article  PubMed  CAS  Google Scholar 

  38. Aubert SD, Li Y, Raushel FM (2004) Biochemistry 43:5707–5715

    Article  PubMed  CAS  Google Scholar 

  39. Porter TN, Li Y, Raushel FM (2004) Biochemistry 43:16285–16292

    Article  PubMed  CAS  Google Scholar 

  40. May O, Habenicht A, Mattes R, Syldatk C, Siemann M (1998) Biol Chem 379:743–747

    PubMed  CAS  Google Scholar 

  41. Huang CY, Yang YS (2003) Biochem Biophys Res Commun 312:467–472

    Article  PubMed  CAS  Google Scholar 

  42. Huang DT, Thomas MA, Christopherson RI (1999) Biochemistry 38:9964–9970

    Article  PubMed  CAS  Google Scholar 

  43. Desmarais W, Bienvenue DL, Bzymek KP, Petsko GA, Ringe D, Holz RC (2006) J Biol Inorg Chem 11:398–408

    Article  PubMed  CAS  Google Scholar 

  44. Wenzel NF, Carenbauer AL, Pfiester MP, Schilling O, Meyer-Klaucke W, Makaroff CA, Crowder MW (2004) J Biol Inorg Chem 9:429–438

    Article  PubMed  CAS  Google Scholar 

  45. Peraro MD, Vila AJ, Carloni P (2002) J Biol Inorg Chem 7:704–712

    Article  Google Scholar 

  46. Costello A, Periyannan G, Yang KW, Crowder MW, Tierney DL (2006) J Biol Inorg Chem 11:351–358

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yi-Rong Chen for purification of D313E mutant protein. This research was supported by grants from the National Science Council, Taiwan (96-2627-B-009-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh-Shyong Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2008_428_MOESM1_ESM.pdf

The pH profiles of metal-reconstituted hydantoinase using 5-leucinyl-hydantoin as the substrate. (a) pH profile of k cat. (b) pH profile of k cat/K m. Enzymatic activity was determined using 5–100 μg metal-reconstituted hydantoinase. Closed circles denote Co-hydantoinase. Closed squares denote Mn-hydantoinase. Closed triangles denote Zn-hydantoinase. (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CY., Hsu, CC., Chen, MC. et al. Effect of metal binding and posttranslational lysine carboxylation on the activity of recombinant hydantoinase. J Biol Inorg Chem 14, 111–121 (2009). https://doi.org/10.1007/s00775-008-0428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-008-0428-x

Keywords

Navigation