Skip to main content
Log in

Structural characteristics of protein binding sites for calcium and lanthanide ions

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Surveys of X-ray structures of Ca2+-containing and lanthanide ion-containing proteins and coordination complexes have been performed and structural features of the metal binding sites compared. A total of 515 structures of Ca2+-containing proteins were considered, although the final data set contained only 44 structures and 60Ca 2+ binding sites with a total of 323 ligands. Eighteen protein structures containing lanthanide ions were considered with a final data set containing eight structures and 11 metal binding sites. Structural features analysed include coordination numbers of the metal ions, the identity of their ligands, the denticity of carboxylate ligands, and the type of secondary structure from which the ligands are derived. Three general types of calcium binding site were identified in the final data set: class I sites supply the Ca2+ ligands from a continuous short sequence of amino acids; class II sites have one ligand supplied by a part of the amino acid sequence far removed from the main binding sequence; and class III sites are created by amino acids remote from one another in the sequence. The abundant EF-hand type of Ca2+ binding site was under-represented in the data set of structures analysed as far as its biological distribution is concerned, but was adequately represented for the chemical survey undertaken. A turn or loop structure was found to provide the bulk of the ligands to Ca2+, but helix and sheet secondary structures are slightly better providers of bidentate carboxylate ligation than turn or loop structures. The average coordination number for Ca2+ was 6.0, though for EF-hand sites it is 7. The average coordination number of a lanthanide ion in an intrinsic protein Ca2+ site was 7.2, but for the adventitious sites was only 4.4. A survey of the Cambridge Structural Database showed there are small-molecule lanthanide complexes with low coordination numbers but it is likely that water molecules, which do not appear in the electron density maps, are present for some lanthanide sites in proteins. A detailed comparison of the well-defined Ca2+ and lanthanide ion binding sites suggests that a reduction of hydrogen bonding associated with the ligating residues of the binding sites containing lanthanide ions may be a response to the additional positive charge of the lanthanide ion. Major structural differences between Ca2+ binding sites with weak and strong binding affinities were not obvious, a consequence of long-range electrostatic interactions and metal ion-induced protein conformational changes modulating affinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Holm RH, Solomon El (eds) (1996) Chem Rev 96:2237–3042

    Google Scholar 

  2. Da Silva JJRF, Williams RJP (1991) The biological chemistry of the elements. Clarendon Press, Oxford

    Google Scholar 

  3. Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Sausalito, Calif

    Google Scholar 

  4. Glusker JP (1991) Adv Protein Chem 42:1–76

    Article  PubMed  CAS  Google Scholar 

  5. Kretsinger RH, Kockolds CE (1973) J Biol Chem 248:3313–3326

    PubMed  CAS  Google Scholar 

  6. Einspahr H, Bugg CE (1984) In: Sigel H (ed) Metal ions in biological systems, vol 17. Dekker, Basel, pp 51–71

    Google Scholar 

  7. McPhalen CA, Strynadka NCJ, James MNG (1991) Adv Protien Chem 42:77–144

    Article  CAS  Google Scholar 

  8. da Silva ACR, Reinach FC (1991) Trends Biochem Sci 16:53–57

    Article  PubMed  Google Scholar 

  9. Falke JJ, Drake SK, Hazard AL, Peersen OB (1994) Q Rev Biophys 27:219–290

    Article  PubMed  CAS  Google Scholar 

  10. Skelton NJ, Kördel J, Akke M, Forsén S, Chazin WJ (1994) Nat Struct Biol 1:239–245

    Article  PubMed  CAS  Google Scholar 

  11. Ikura M (1996) Trends Biochem Sci 21:14–17

    PubMed  CAS  Google Scholar 

  12. Cates MS, Berry MB, Ho EL, Li Q, Potter JD, Phillips GN Jr (1999) Structure 7:1269–1278

    Article  PubMed  CAS  Google Scholar 

  13. Kuroki R, Taniyama Y, Seko C, Nakamura H, Kikuchi M, Ikehara M (1989) Proc Natl Acad Sci USA 86:6903–6907

    Article  PubMed  CAS  Google Scholar 

  14. Bonagura CA, Sundaramoorthy M, Pappa HS, Patterson WR, Poulos TL (1996) Biochemistry 35:6107–6115

    Article  PubMed  CAS  Google Scholar 

  15. Katz AK, Glusker JP, Beebe SA, Bock CW (1996) J Am Chem Soc 118:5752–5763

    Article  CAS  Google Scholar 

  16. Rubin GM, Yandell MD, Wortmann JR, Miklos GLG, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM, Henikoff S, Skupski MP, Misra S, Ashburner M, Birney E, Boguski MS, Brody T, Brokstein P, Celniker SE, Chervitz SA, Coates D, Cravchik A, Gabrielian A, Galle RF, Gelbart WM, George RA, Goldstein LSB, Gong F, Guan P, Harris NL, Hay BA, Hoskins RA, Li J, Li Z, Hynes RO, Jones SJM, Kuehl PM, Lemaitre B, Littleton JT, Morrison DK, Mungall C, O'Farrell PH, Pickeral OK, Shue C, Vosshall LB, Zhang J, Zhao Q, Zheng ZH, Zhong F, Zhong, W, Gibbs R, Venter JC, Adams MD, Lewis S (2000) Science 287:2204–2215

    Article  PubMed  CAS  Google Scholar 

  17. Clark ID, MacManus JP, Banville D, Szabo AG (1993) Anal Biochem 210:1–6

    Article  PubMed  CAS  Google Scholar 

  18. MacKenzie CR, Clark ID, Evans SV, Hill IE, MacManus JP, Dubuc G, Bundle DR, Narang SA, Young NM, Szabo AG (1995) Immunotechnology 1:139–150

    Article  PubMed  CAS  Google Scholar 

  19. Moore JD, Skinner MA, Swatman DR, Hawkins AR, Brown, KA (1998) J Am Chem Soc 120:7105–7106

    Article  CAS  Google Scholar 

  20. Matthews BW, Weaver LH (1974) Biochemistry 13:1719–1725

    Article  PubMed  CAS  Google Scholar 

  21. Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA (1991) Science 254:1608–1615

    Article  PubMed  CAS  Google Scholar 

  22. Shapiro L, Fannon AM, Kwong PD, Thompson A, Lehmann MS, Grübel G, Legrand J-F, Als-Nielsen J, Colman DR, Hendrickson WA (1995) Nature 374:327–337

    Article  PubMed  CAS  Google Scholar 

  23. Burling FT, Weis WI, Flaherty KM, Brünger AT (1996) Science 271:72–77

    Article  PubMed  CAS  Google Scholar 

  24. Grobler JA, Essen L-O, Williams RL, Hurley JH (1996) Nat Struct Biol 3:788–795

    Article  PubMed  CAS  Google Scholar 

  25. Brodersen DE, Etzerodt M, Madsen P, Celis JE, Thøgersen HC, Nyborg J, Kjeldgaard M (1998) Structure 6:477–489

    Article  PubMed  CAS  Google Scholar 

  26. Boggon TJ, Shapiro L (2000) Structure 8:R143–R149

    Article  PubMed  CAS  Google Scholar 

  27. Dobson CM, Williams RJP (1977) In: Pullman H, Goldblum N (eds) Metal-ligand interactions in organic chemistry and biochemistry, vol 1. Reidel, Dordrecht, pp 255–282

    Chapter  Google Scholar 

  28. Lee L, Sykes BD (1983) Biochemistry 22:4366–4373

    Article  PubMed  CAS  Google Scholar 

  29. Bentrop D, Bertini I, Cremonini MA, Forsén S, Luchinat C, Malmendal A (1997) Biochemistry 36:11605–11618

    Article  PubMed  CAS  Google Scholar 

  30. Biekofsky RR, Muskett FW, Schmidt JM, Martin SR, Browne JP, Bayley PM, Feeney J (1999) FEBS Lett 460:519–526

    Article  PubMed  CAS  Google Scholar 

  31. Allegrozi M, Bertini I, Janik MBL, Lee Y-M, Liu G, Luchinat C (2000) J Am Chem Soc 122:4154–4161

    Article  Google Scholar 

  32. Yuan J, Matsumoto K (1998) Anal Chem 70:596–601

    Article  PubMed  CAS  Google Scholar 

  33. Horrocks WD Jr (1993) Methods Enzymol 226:495–538

    Article  PubMed  CAS  Google Scholar 

  34. Sabbatini N, Guardigh M, Lehn J-M (1993) Coord Chem Rev 123:201–228

    Article  CAS  Google Scholar 

  35. Hertzberg RP, Pope AJ (2000) Curr Opin Chem Biol 4:445–451

    Article  PubMed  CAS  Google Scholar 

  36. Banner DW, D'Arcy A, Chène C, Winkler FK, Guha A, Konigsberg WH, Nemerson Y, Kirchhofer D (1996) Nature 380:41–46

    Article  PubMed  CAS  Google Scholar 

  37. Sunnerhagen MS, Persson E, Dahlqvist I, Drakenberg T, Stenflo J, Mayhew M, Robin M, Handford P, Tilley JW, Campbell ID, Brownlee GG (1993) J Biol Chem 268:23339–23344

    PubMed  CAS  Google Scholar 

  38. Allen FH, Kennard O (1993) Chem Des Automation News 8:31–37

    Google Scholar 

  39. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112:535–542

    Article  PubMed  CAS  Google Scholar 

  40. Sayle R, Milner-White EJ (1995) Trends Biochem Sci 20:374–376

    Article  PubMed  CAS  Google Scholar 

  41. Koradi R, Billeter M, Wüthrich K (1996) J Mol Graphics 14:51–59

    Article  CAS  Google Scholar 

  42. Handford PA, Mayhew M, Baron M, Winship PR, Campbell ID, Brownlee GG (1991) Nature 351:164–167

    Article  PubMed  CAS  Google Scholar 

  43. Hofmann K, Bucher P, Falquet L, Bairoch A (1999) Nucleic Acids Res 27:215–219

    Article  PubMed  CAS  Google Scholar 

  44. Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM (1997) Trends Biochem Sci 22:488–490

    Article  PubMed  CAS  Google Scholar 

  45. Creighton TE (1993) Proteins. Freeman, New York, pp 255–257

    Google Scholar 

  46. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry, 4th edn. HarperCollins, New York, pp 599–613

    Google Scholar 

  47. Williams RJP (1982) Struct Bonding 50:79–119

    Article  CAS  Google Scholar 

  48. Gomis-Ruth F-X, Kress LF, Bode W (1993) EMBO J 12:4151–4157

    PubMed  CAS  Google Scholar 

  49. Elgavish S, Shaanan B (1988) J Mol Biol 277:917–932

    Article  Google Scholar 

  50. Parsons MR, Convery MA, Wilmot CM, Yadav KDS, Blakely V, Corner AS, Phillips SEV, McPherson MJ, Knowles PF (1995) Structure 3:1171–1184

    Article  PubMed  CAS  Google Scholar 

  51. Carr S, Penfold CN, Bamford V, James R, Hemmings AM (2000) Structure 8:57–66

    Article  PubMed  CAS  Google Scholar 

  52. Carr S (2000) PhD thesis, University of East Anglia, Norwich, UK

    Google Scholar 

  53. Shulz GE, Schirmer RH (1979) Principles of protein structure. Springer, Berlin Heidelberg New York, p 109

    Book  Google Scholar 

  54. Baker EN, Hubbard RE (1984) Prog Biophys Mol Biol 44:97–179

    Article  PubMed  CAS  Google Scholar 

  55. Weis WI, Drickamer K, Hendrickson WA (1992) Nature 360:127–134

    Article  PubMed  CAS  Google Scholar 

  56. Tomchick DR, Turner RJ, Switzer RL, Smith JL (1998) Structure 6:337–350

    Article  PubMed  CAS  Google Scholar 

  57. Brautigan CA, Aschheim K, Steitz TA (1999) Chem Biol 6:901–908

    Article  Google Scholar 

  58. Geraldes CFGC, Urbano AM, Hoefnagel MA, Peters JA (1993) Inorg Chem 32:2426–2432

    Article  CAS  Google Scholar 

  59. Lammers H, Maton F, Pubanz D, van Laren MW, van Bekkum H, Merbach AE, Muller RN, Peters JA (1997) Inorg Chem 36:2527–2538

    Article  CAS  Google Scholar 

  60. Satyshov KA, Pyzalska D, Greaser M, Rao ST, Sundaralingam M (1994) Acta Crystallogr Sect D 50:40–49

    Article  Google Scholar 

  61. Rao ST, Satyshov KA, Greaser ML, Sundaralingam M (1996) Acta Crystallogr Sect D 52:916–922

    Article  CAS  Google Scholar 

  62. Bruno J, Zauharm RJ, Horrocks WD Jr (1992) Biochemistry 31:7016–7026

    Article  PubMed  CAS  Google Scholar 

  63. Moore GR, Pettigrew GW, Rogers NK, Williams G (1986) In: Xavier AV (ed) Frontiers in bioinorganic chemistry. VCH, Weinheim, pp 494–506

    Google Scholar 

  64. Mauk AG, Moore GR (1997) JBIC 2:119–125

    Article  CAS  Google Scholar 

  65. Snyder EE, Buoscio BW, Falke JJ (1990) Biochemistry 29:3937–3943

    Article  PubMed  CAS  Google Scholar 

  66. Falke JJ, Snyder EE, Thatcher KC, Voertler CS (1991) Biochemistry 30:8690–8697

    Article  PubMed  CAS  Google Scholar 

  67. Henzl MT, Hapak RC, Goodpasture EA (1996) Biochemistry 35:5856–5869

    Article  PubMed  CAS  Google Scholar 

  68. Drake SK, Zimmer MA, Kundrot C, Falke JJ (1997) J Gen Physiol 110:173–184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey R. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pidcock, E., Moore, G.R. Structural characteristics of protein binding sites for calcium and lanthanide ions. JBIC 6, 479–489 (2001). https://doi.org/10.1007/s007750100214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s007750100214

Keywords

Navigation