Skip to main content
Log in

Halocafeteria seosinensis gen. et sp. nov. (Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Recently, heterotrophic nanoflagellates (HNF) have been reported to actively ingest prokaryotes in high salinity waters. We report the isolation and culture of an HNF from a Korean saltern pond of 300‰ salinity. The organism is biflagellated with an acronematic anterior flagellum and never glides on surfaces. The mitochondria have tubular cristae. Neither transitional helix nor spiral fiber were observed in the transition zones of the flagella. The cell has a cytostome supported by an arc of eight microtubules, suggesting that our isolate is a bicosoecid. Our isolate had neither mastigonemes, lorica, body scales, nor cytopharynx and thus could not be placed in any of the presently described bicosoecid genera. Phylogenetic analysis of 18S rRNA gene sequences from stramenopiles confirmed the bicosoecid affinities of our isolate, but did not place it within any established genus or family. Its closest relatives include Caecitellus and Cafeteria. The optimal range of growth temperature was 30–35°C. The isolated HNF grew optimally at 150‰ salinity and tolerated up to 363‰ salinity, but it failed to grow below 75‰ salinity, indicating that it could be a borderline extreme halophile. On the basis of its morphological features and position in 18S rRNA trees we propose a novel genus for our isolate; Halocafeteria, n. gen. The species name Halocafeteria seosinensis sp. nov. is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1999) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bloem J, Bär-Gilissen M-JB, Cappenberg TE (1986) Fixation, counting, and manipulation of heterotrophic nanoflagellates. Appl Environ Microbiol 52:1266–1272

    PubMed  CAS  Google Scholar 

  • Brooker BE (1971) Fine structure of Bodo saltans and Bodo candatus (Zoomastigophora, Protozoa) and their affinities with the Tryanosomatidae. Bull Br Mus Nat Hist 22:89–102

    Google Scholar 

  • Caron DA (1986) Effect of temperature on growth, respiration, and nutrient regeneration by an omnivorous microflagellate. Appl Environ Microbiol 52:1340–1347

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Flagellate megaevolution: the basis for eukaryote diversification. In: Leadbeater BSC, Green JC (eds) The flagellates. Systematics Association Special Publications, Taylor & Francies, London, pp 361–390

    Google Scholar 

  • Cavalier-Smith T, Chao EE (2006) Phylogeny and megasystematics of phagotrophic heterokonts (Kingdom Chromista). J Mol Evol 62:388–420

    Article  PubMed  CAS  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Øvreås L, et al (2002) Changes in archaeal, prokaryotes and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  • Choi DH, Cho BC (2005) Idiomarina seosinensis sp. nov., isolated from hypersaline water of a solar saltern in Korea. Int J Syst Evol Microbiol 55:379–383

    Article  PubMed  CAS  Google Scholar 

  • Clavero E, Hernández-Mariné M, Grimalt JO, Garcia-Pichel F (2000) Salinity tolerance of diatoms from thalassic hypersaline environments. J Phycol 36:1021–1034

    Article  Google Scholar 

  • Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel elctrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

    Article  PubMed  Google Scholar 

  • Dujardin MF (1841) Histoire naturelle des zoophytes. Infusoires, comprenant la physiologie et la classification de ces animaux, et la maniére de les étudier a l’aide du microscope. Librairie Encyclopédique de Roret, Paris

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fenchel T (1986) The ecology of heterotrophic microflagellates. Adv Microb Ecol 9:57–97

    Google Scholar 

  • Fenchel T, Patterson DJ (1988) Cafeteria roenbergensis nov. gen., nov. sp., a heterotrophic microflagellate from marine plankton. Mar Microb Food Web 3:9–19

    Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Guillou L, Chrétiennot-Dinet M-J, Boulben S, Moon-van der Staay SY, Vaulot D (1999) Symbiomonas scintillans gen. et sp. nov. and Picophagus flagellatus gen. et sp. nov. (Heterokonta): two new heterotrophic flagellates of picoplanktonic size. Protist 150:383–398

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP (2000) MrBayes: Bayesian inference of phylogeny. Distributed by the author. Department of Biology, University of Rochester, Rochester

  • Huelsenbeck JP, Ronquist F (2001) MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Javor B (1989) Hypersaline environments: microbiology and biogeochemistry. Springer, Berlin Heidelberg New York, pp 5–204

    Google Scholar 

  • Karpov SA (2000) Ultrastructure of the aloricate bicosoecid Pseudobodo tremulans, with revision of the order Bicosoecida. Protistology 1:101–109

    Google Scholar 

  • Karpov SA, Sogin ML, Silberman JD (2001) Rootlet homology, taxonomy, and phylogeny of bicosoecids based on 18S rRNA gene sequences. Protistology 2:34–47

    Google Scholar 

  • Kusher DJ (1978) Microbial life in extreme environments. Academic, New York, p 323

  • Lee WJ, Patterson DJ (2002) Abundance and biomass of heterotrophic flagellates, and factors controlling their abundance and distribution in sediments of Botany Bay. Microb Ecol 43:467–481

    Article  PubMed  CAS  Google Scholar 

  • Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71:491–499

    Article  PubMed  CAS  Google Scholar 

  • Namyslowski B (1913) Über unbekannte halophile Mikroorganismen aus dem Innern des Salzbergwerkes Wieliczka. Bull Int Acad Sci Krakow B 3/4:88–104

    Google Scholar 

  • O’Kelly CJ, Nerad TA (1998) Kinetid architecture and bicosoecid affinities of the marine heterotrophic nanoflagellate Caecitellus parvulus (Griessmann 1913) Patterson et al. (1993). Eur J Protistol 34:369–375

    Google Scholar 

  • Oren A (1995) The role of glycerol in the nutrition of halophilic archaeal communities: a study of respiratory electron transport. FEMS Microbiol Ecol 16:281–290

    Google Scholar 

  • Oren A (2002) Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol 39:1–7

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Kim HJ, Choi DH, Cho BC (2003) Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat Microb Ecol 33:173–179

    Google Scholar 

  • Patterson DJ, Simpson AGB (1996) Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur J Protistol 32:423–448

    Google Scholar 

  • Patterson DJ, Vørs N, Simpson AGB, O’Kelly CJ (2002) Residual free-living and predatory heterotrophic flagellates. In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the protozoa, 2nd edn. Society of Protozoologists, Lawrence, Kansas, pp 1302–1328

    Google Scholar 

  • Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiology 105:95–113

    Article  Google Scholar 

  • Roesler CS, Culbertson CW, Etheridge SM, Goericke R, Kiene RP, Miller LO, Oremland RS (2002) Distribution, production, and ecophysiology of Picocystis strain ML from Mono Lake, California. Limnol Oceanogr 47:420–452

    Article  Google Scholar 

  • Ruinen J (1938) Notizen über Salzflagellaten. II. Über die Verbereitung der Salzflagellaten. Arch Protistenkd 90:210–258

    CAS  Google Scholar 

  • Swofford DL (1998) PAUP*4.0. Sinauer Associates, Sunderland

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Van de Peer Y, De Rijk P, Wuyts J, Winkelmans T, De Wachter R (2000) The European small subunit ribosomal RNA database. Nucleic Acids Res. 28:175–176

    Article  PubMed  Google Scholar 

  • Verhagen FJM, Zölffel M, Brugerolle G, Patterson DJ (1994) Adriamonas peritocrescens gen. nov., sp. nov., a new free-living soil flagellate (Protista, Pseudodendromonadidae incertae sedis). Eur J Protistol 30:295–308

    Google Scholar 

  • Von der Heyden S, Cavalier-Smith T (2005) Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. Int J Syst Evol Microbiol 55:2605–2621

    Article  PubMed  CAS  Google Scholar 

  • Von der Heyden S, Chao EE, Vickerman K, Cavalier-Smith T (2004) Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of Euglenozoa. J Eukaryot Microbiol 51:402–416

    Article  PubMed  Google Scholar 

  • Volcani BE (1944) The microorganisms of the Dead Sea. In: Papers collected to commemorate the 70th anniversary of Dr. Chaim Weizmann. Daniel Sieff Research Institute, Rehovoth, pp 71–85

Download references

Acknowledgments

The present study was supported by project BK 21 of the Korean government, and NSERC grant 298366-04 to AGBS. Some computational resources were funded by Genome Atlantic. AGBS thanks the Canadian Institute for Advanced Research (CIAR) for support as a ‘scholar’. Thanks to Melissa Morne (Dalhousie University) for additional phylogenetic analyses with newly published sequences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair G. B. Simpson.

Additional information

Communicated by K. Horikoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.S., Cho, B.C. & Simpson, A.G.B. Halocafeteria seosinensis gen. et sp. nov. (Bicosoecida), a halophilic bacterivorous nanoflagellate isolated from a solar saltern. Extremophiles 10, 493–504 (2006). https://doi.org/10.1007/s00792-006-0001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0001-x

Keywords

Navigation