Skip to main content
Log in

Construction of a toroidal model for the magainin pore

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Magainins are natural peptides that selectively kill bacteria at concentrations that are harmless to animal cells. Due to a positive charge and distinct hydrophobic moment, magainins in the α-helical conformation interact favorably with bacterial membrane lipids. These interactions lead to the formation of large openings in the membrane and to the cell's death. The openings (toroidal pores) are supramolecular structures consisting of lipid and peptide molecules. A computer model of the pore in a bacterial membrane was constructed (see Figure) for the study of the molecular basis for magainin selectivity and specificity. Details of the construction and the preliminary equilibration of the pore model are given in this paper.

Figure Stages of PORE construction. a A side view and b the top view of E6 cluster (see text for details). The coloring scheme of lipid molecules is described in the caption to Fig. 5. c The top view of the magainin pore built of five M2a molecules (in purple and gold), five EG4E clusters, and five E6 clusters. d The top view of the lamellar part of PORE. The size of the hole in the bilayer center matches the size of the supramolecular complex shown in c. e The pore (c) is now placed in the central part of the bilayer (d)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b.
Fig. 2.
Fig. 3a–c.
Fig. 4a–c.
Fig. 5a–d.
Fig. 6a–e.
Fig. 7a–c.
Fig. 8a–d.
Fig. 9a–c.
Fig. 10.

Similar content being viewed by others

Abbreviations

M2a:

magainin-2 amide

POPE:

1-palmitoyl-2-oleoyl-phosphatidylethanoloamine

POPG:

1-palmitoyl-2-oleoyl-phosphatidylglycerol

References

  1. Zasloff M (1987) Proc Natl Acad Sci USA 84:5449

    CAS  PubMed  Google Scholar 

  2. Gesell J, Zasloff M, Opella SJ (1997) J Biomol NMR 9:127–135

    CAS  PubMed  Google Scholar 

  3. Matsuzaki K, Sugishita K, Fujii N, Miyajima M (1995) Biochemistry 34:3423–3429

    CAS  PubMed  Google Scholar 

  4. Matsuzaki K (1999) Biochim Biophys Acta 1462:1–10

    Article  CAS  PubMed  Google Scholar 

  5. Tytler EM, Anantharamaiah GM, Walker DE, Mishra VK, Palgunachari MN, Segrest JP (1995) Biochemistry 34:4393–4401

    CAS  PubMed  Google Scholar 

  6. Wieprecht T, Dathe M, Epand RM, Beyermann M., Krause E, Maloy WL, MacDonald DL, Bienert M (1997) Biochemistry 36:12869–12880

    Article  CAS  PubMed  Google Scholar 

  7. Maloy WL, Kari UP (1995) Biopolymers 37:105–122

    CAS  PubMed  Google Scholar 

  8. Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Biochemistry 35:13723–13728

    CAS  PubMed  Google Scholar 

  9. Matsuzaki K, Murase O, Fujii N, Miyajima M (1996) Biochemistry 35:11361–11368

    Article  CAS  PubMed  Google Scholar 

  10. Herrmann A, Zachowski A, Devaux PF (1990) Biochemistry 29:2023–2027

    CAS  Google Scholar 

  11. Mollay C, Kreil G, Berger H (1976) Biochim Biophys Acta 426:317–324

    Article  CAS  PubMed  Google Scholar 

  12. Singer SJ, Nicolson GL (1972) Science 175:720–731

    CAS  PubMed  Google Scholar 

  13. Cullis PR, de Kruijff B (1978) Biochim Biophys Acta 513:31–42

    CAS  PubMed  Google Scholar 

  14. de Kruijff B (1997) Curr Opin Chem Biol 1:564–569

    Article  PubMed  Google Scholar 

  15. Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H, Kitamura K, Kusumi A (1997) J Phys Chem 101:3677–3691

    Article  CAS  Google Scholar 

  16. Murzyn K, Pasenkiewicz-Gierula M (1999) Acta Biochim Pol 46:631–639

    CAS  PubMed  Google Scholar 

  17. Cascales JJL, delaTorre JG, Marrink SJ, Berendsen HJC (1996) J Chem Phys 104:2713–2720

    Article  Google Scholar 

  18. Lins RD, Straatsma TP (2001) Biophys J 81:1037–1046

    CAS  PubMed  Google Scholar 

  19. Ludtke SJ, He K, Wu Y, Huang H (1994) Biochim Biophys Acta 1190:181–184

    CAS  PubMed  Google Scholar 

  20. Case DA, Pearlman DA, Caldwell JW, Cheatham III TE, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Ferguson DM, Radmer RJ, Seibel GL, Singh UC, Weiner PK and Kollman PA (1997) AMBER 5. University of California, San Francisco, Calif.

  21. Insight II User Guide (1995) Biosym/MSI, San Diego, Calif.

  22. Kabsch W, Sander C (1983) Biopolymers 22:2577–2637

    CAS  PubMed  Google Scholar 

  23. Sayle R, Milner-White EJ (1995) Trends Biochem Sci 20:374–376

    CAS  PubMed  Google Scholar 

  24. Kraulis PJ (1991) J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  25. Merritt EA, Bacon DJ (1997) Methods Enzymol 277:505–524

    CAS  Google Scholar 

  26. Jorgensen WL, Madura JD, Swenson CJ (1984) J Am Chem Soc 106:6638–6646

    CAS  Google Scholar 

  27. Jorgensen WL, Swenson CJ (1985) J Am Chem Soc 107:569–578

    CAS  Google Scholar 

  28. Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H, Kitamura K, Kusumi A (1999) Biophys J 76:1228–1240

    CAS  PubMed  Google Scholar 

  29. Murzyn K, Róg T, Jezierski G, Takaoka Y, Pasenkiewicz-Gierula M (2001) Biophys J 81:170–183

    CAS  PubMed  Google Scholar 

  30. Aqvist J (1990) J Phys Chem 94:8021–8024

    Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    CAS  Google Scholar 

  32. Hinsen K (2000) J Comput Chem 21:79–85

    Article  CAS  Google Scholar 

  33. Sundaralingam M (1972) Ann NY Acad Sci USA 195:324–355

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants 6 P04A 041 16, 6 P04A 031 21 and KBN/SGI ORIGIN 2000/UJ/048/1999 from the State Committee for Scientific Research and by European Union (contract no. BIER ICA1-CT-2000-70012). KM holds a fellowship award from the Polish Foundation for Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Pasenkiewicz-Gierula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murzyn, K., Pasenkiewicz-Gierula, M. Construction of a toroidal model for the magainin pore. J Mol Model 9, 217–224 (2003). https://doi.org/10.1007/s00894-003-0127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-003-0127-z

Keywords

Navigation