Skip to main content
Log in

AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We report a consistent set of AMBER force-field parameters for the most common phosphorylated amino acids, phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine in different protonation states. The calculation of atomic charges followed the original restrained electrostatic potential fitting procedure used to determine the charges for the parm94/99 parameter set, taking α-helical and β-strand conformations of the corresponding ACE-/NME-capped model peptide backbone into account. Missing force-field parameters were taken directly from the general AMBER force field (gaff) and the parm99 data set with minor modifications, or were newly generated based on ab initio calculations for model systems. Final parameters were validated by geometry optimizations and molecular-dynamics simulations. Template libraries for the phosphorylated amino acids in Leap format and corresponding frcmod parameter files are made available.

Schematic illustration of the systems used for parameter generation. Acid hydrogens are shown in red

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cohen P (2002) Nat Cell Biol 4:E127–E130

    Article  CAS  Google Scholar 

  2. Tholey A, Lindemann A, Kinzel V, Reed J (1999) Biophys J 76:76–87

    Article  CAS  Google Scholar 

  3. Titgemeyer F, Hillen W (2002) Antonie Van Leeuwenhoek 82:59–71

    Article  CAS  Google Scholar 

  4. Klumpp S, Krieglstein J (2002) Eur J Biochem 269:1067–1071

    Article  CAS  Google Scholar 

  5. Rajagopal P, Waygood EB, Klevit RE (1994) Biochemistry 33:15271–15282

    Article  CAS  Google Scholar 

  6. Cheatham TE III, Cieplak P, Kollman PA (1999) J Biomol Struct Dyn 16:845–862

    Article  CAS  Google Scholar 

  7. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  8. Meagher KL, Redman LT, Carlson HA (2003) J Comput Chem 24:1016–1025

    Article  CAS  Google Scholar 

  9. Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J (2001) Cell 105:115–126

    Article  CAS  Google Scholar 

  10. Wozniak E, Oldziej S, Ciarkowski J (2000) Comp Chem 24:381–390

    Article  CAS  Google Scholar 

  11. Bienkiewicz EA, Lumb KJ (1999) J Biomol NMR 15:203–206

    Article  CAS  Google Scholar 

  12. Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) J Comput Chem 16:1357–1377

    Article  CAS  Google Scholar 

  13. Easton RE, Giesen DJ, Welch A, Cramer CJ, Truhlar DG (1996) Theor Chim Acta 93:281–301

    Article  CAS  Google Scholar 

  14. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  15. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc., Wallingford

  17. Wang J, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  18. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  19. Case DA, Pearlman DA, Caldwell JW, Cheatham TE III, Wang J, Ross WS, Simmerling CL, Darden TA, Merz KM, Stanton RV, Cheng AL, Vincent JJ, Crowley M, Tsui V, Gohlke H, Radmer RJ, Duan Y, Pitera J, Massova I, Seibel GL, Singh UC, Weiner PK, Kollman PA (2002) Amber 7. University of California, San Francisco, CA

  20. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  21. Kosinsky YA, Volynsky PE, Lagant P, Vergoten G, Suzuki E, Arseniev AS, Efremov RG (2004) J Comput Chem 25:1313–1321

    Article  CAS  Google Scholar 

  22. Hopfinger AJ, Pearlstein RA (1984) J Comput Chem 5:486–499

    Article  CAS  Google Scholar 

  23. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  24. Bryce R, AMBER Parameter Database, http://pharmacy.man.ac.uk/amber/

Download references

Acknowledgements

The authors wish to thank Heike Meiselbach for helpful discussions, and the Leibnitz-Rechenzentrum in Munich and the Regionales Rechenzentrum Erlangen for computational resources. This work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB473, C10) to H. Sticht. N. Homeyer acknowledges a fellowship from the BioMedTec International Graduate School of Science (BIGSS), supported by the state of Bavaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Sticht.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homeyer, N., Horn, A.H.C., Lanig, H. et al. AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J Mol Model 12, 281–289 (2006). https://doi.org/10.1007/s00894-005-0028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0028-4

Keywords

Navigation