Skip to main content

Advertisement

Log in

Kieferkammveränderungen nach Versorgung frischer Extraktionsalveolen mit polylactidvernetzten ß-TCP Wurzelreplikaten – eine histomorphometrische Tierstudie

Extraktionswundversorgung mit ß-TCP Replikaten

  • Originalien
  • Published:
Mund-, Kiefer- und Gesichtschirurgie Aims and scope Submit manuscript

Zusammenfassung

Ziel der vorliegenden Studie war es, dimensionale Veränderungen des Kieferknochens nach Extraktionswundversorgung mit passgenauen ß-TCP Wurzelreplikaten im Vergleich zu nicht aufgefüllten Alveolen zu untersuchen. Bei insgesamt zehn Hunden wurde unmittelbar nach Entfernung des ersten Prämolaren ein passgenaues Wurzelreplikat aus polylactidvernetzten ß-TCP-Granula in die Alveole eingebracht. Unbehandelte Extraktionsalveolen der Gegenseite dienten als split-mouth-Kontrolle. Nach drei und sechs Monaten wurden jeweils fünf Tiere geopfert und die entsprechenden Kieferabschnitte histologisch und histomorphometrisch untersucht. Folgende Daten wurden erhoben: Differenz der Höhe der lingualen und bukkalen Alveolenwand; Breite der Alveolenwände und Gesamtknochenbreite 1, 3 und 5 mm unterhalb des jeweiligen Knochenkamms.

Die Heilung verlief unauffällig bei allen Tieren. Die Histologien der Drei-Monats-Proben zeigten ein gut abgrenzbares, geringer als die Umgebung mineralisiertes Knochengewebe innerhalb der Alveolen sowohl bei der Kontroll- als auch bei der Testgruppe. Es ließen sich in der Testgruppe kleinere Anteile bindegewebig organisierten Materials, aber keine Reste des Knochenersatzmaterials nachweisen. Nach sechs Monaten waren die Grenzen zwischen altem und neuem Knochen weitestgehend verschwommen. Die Histomorphometrie (Tabelle 1, 2, 3) zeigte bei keinem der Messparameter einen statistisch signifikanten Unterschied zwischen Test- und Kontrollgruppe (p > 0.05, Student's T-Test). Es ließ sich schlussfolgern, dass die Versorgung von Extraktionsalveolen mit diesem polylactidvernetzten TCP-Wurzelreplikat keinen Vorteil hinsichtlich eines Erhaltes der Kieferkammdimension zu haben scheint.

Tabelle 1 Mittelwerte und Standardabweichungen der Knochenkammhöhendifferenzen nach drei und sechs Monaten
Tabelle 2 Mittelwerte und Standardabweichungen der Alveolenwandbreite nach drei und sechs Monaten 1, 3 und 5 mm infracrestal
Tabelle 3 Mittelwerte und Standardabweichungen der Gesamtknochenbreiten nach drei und sechs Monaten 1, 3 und 5 mm infracrestal

Abstract

The aim of the present study was to histologically evaluate extraction wound healing after socket preservation using a ß-TCP root taper.

Ten dogs were used in the study. Immediately following careful extraction of the first premolar of the lower jaw the extraction sockets were filled using a chair-side thermically formed polylactide-linked root taper (RT). To avoid contamination, a further polylactide barrier covered the crestal surface of the taper. Untreated extraction sites of the opposite side served as control. After three and six months of healing, the animals were sacrified and dissected blocks were prepared for histomorphometrical analysis. Following parameters were evaluated: difference between lingual and buccal bone height, lingual and buccal alveolar wall and total bone width 1, 3 and 5 mm underneath the top of the respective crest.

During the entire study period healing was uneventful for all animals. Histological analysis of three months specimens revealed a definable area of minor mineralized bone within the former extraction sockets in both RT and control group. In the test group small areas of material organized by connective tissue but no remnants of the bone substitute material could be observed. After six months the borderline between new and pre-existing bone had disappeared. Histomorphometric analysis revealed no statistically significant differences between test and control group after three or six months (p > 0.05, paired T-test).

Within the limits of the present study it was concluded that the application of polylactide-stabilized RT does not improve the dimensional ridge alterations after tooth extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Araujo MG, Lindhe J (2005) Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol 32(2):212–218

    Article  PubMed  Google Scholar 

  2. Pietrokovski J, Massler M (1967) Alveolar ridge resorption following tooth extraction. J Prosthet Dent 17(1):21–27

    Article  PubMed  CAS  Google Scholar 

  3. Schropp L, et al. (2003) Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent 23(4):313–323

    PubMed  Google Scholar 

  4. Camargo PM, et al. (2000) Influence of bioactive glass on changes in alveolar process dimensions after exodontia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90(5):581–586

    PubMed  CAS  Google Scholar 

  5. Iasella JM, et al. (2003) Ridge preservation with freeze-dried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans. J Periodontol 74(7):990–999

    Article  PubMed  Google Scholar 

  6. Lekovic V, et al. (1998) Preservation of alveolar bone in extraction sockets using bioabsorbable membranes. J Periodontol 69(9):1044–1049

    PubMed  CAS  Google Scholar 

  7. Lekovic V, et al. (1997) A bone regenerative approach to alveolar ridge maintenance following tooth extraction. Report of 10 cases. J Periodontol 68(6):563–570

    PubMed  CAS  Google Scholar 

  8. Atwood DA (2001) Some clinical factors related to rate of resorption of residual ridges. 1962. J Prosthet Dent 86(2):119–125

    Article  PubMed  CAS  Google Scholar 

  9. Tallgren A (2003) The continuing reduction of the residual alveolar ridges in complete denture wearers: a mixed-longitudinal study covering 25 years. 1972. J Prosthet Dent 89(5):427–435

    Article  PubMed  Google Scholar 

  10. Denissen HW, de Groot K (1979) Immediate dental root implants from synthetic dense calcium hydroxylapatite. J Prosthet Dent 42(5):551–556

    Article  PubMed  CAS  Google Scholar 

  11. Quinn JH, Kent JN (1984) Alveolar ridge maintenance with solid nonporous hydroxylapatite root implants. Oral Surg Oral Med Oral Pathol 58(5):511–521

    Article  PubMed  CAS  Google Scholar 

  12. Sattayasanskul W, Brook IM, Lamb DJ (1988) Dense hydroxyapatite root replica implantation: measurement of mandibular ridge preservation. Int J Oral Maxillofac Implants 3(3):203–207

    PubMed  CAS  Google Scholar 

  13. Cranin AN, et al. (1988) Hydroxylapatite (H/A) particulate versus cones as post-extraction implants in humans. Parts I & II. J Biomed Mater Res 22(12):1165–1180

    Article  PubMed  CAS  Google Scholar 

  14. Kwon HJ, et al. (1986) Alveolar ridge maintenance with hydroxylapatite ceramic cones in humans. J Oral Maxillofac Surg 44(7):503–508

    Article  PubMed  CAS  Google Scholar 

  15. Yilmaz S, Efeoglu E, Kilic AR (1998) Alveolar ridge reconstruction and/or preservation using root form bioglass cones. J Clin Periodontol 25(10):832–839

    Article  PubMed  CAS  Google Scholar 

  16. Nair PN, et al. (2006) Biocompatibility of β-Tricalcium Phosphate Root Replicas in Porcine Tooth Extraction Sockets – A Correlative Histological, Ultrastructural, and X-ray Microanalytical Pilot Study. J Biomater Appl 20(4):307–324

    Article  PubMed  CAS  Google Scholar 

  17. Nair PN, Schug J (2004) Observations on healing of human tooth extraction sockets implanted with bioabsorbable polylactic-polyglycolic acids (PLGA) copolymer root replicas: a clinical, radiographic, and histologic follow-up report of 8 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(5):559–569

    Article  Google Scholar 

  18. Suhonen JT, Meyer BJ (1996) Polylactic acid (PLA) root replica in ridge maintenance after loss of a vertically fractured incisor. Endod Dent Traumatol 12(3):155–160

    Article  PubMed  CAS  Google Scholar 

  19. Artzi Z, Nemcovsky CE, Tal H (2001) Efficacy of porous bovine bone mineral in various types of osseous deficiencies: clinical observations and literature review. Int J Periodontics Restorative Dent 21(4):395–405

    PubMed  CAS  Google Scholar 

  20. Brugnami F, et al. (1999) GBR in human extraction sockets and ridge defects prior to implant placement: clinical results and histologic evidence of osteoblastic and osteoclastic activities in DFDBA. Int J Periodontics Restorative Dent 19(3):259–267

    PubMed  CAS  Google Scholar 

  21. Carmagnola D, Adriaens P, Berglundh T (2003) Healing of human extraction sockets filled with Bio-Oss. Clin Oral Implants Res 14(2):137–143

    Article  PubMed  Google Scholar 

  22. Fowler EB, Breault LG, Rebitski G (2000) Ridge preservation utilizing an acellular dermal allograft and demineralized freeze-dried bone allograft: Part II. Immediate endosseous implant placement. J Periodontol 71(8):1360–1364

    Article  PubMed  CAS  Google Scholar 

  23. Klokkevold PR, Han TJ, Camargo PM (1999) Aesthetic management of extractions for implant site development: delayed versus staged implant placement. Pract Periodontics Aesthet Dent 11(5):603–610; quiz 612

    PubMed  CAS  Google Scholar 

  24. Smukler H, Landi L, Setayesh R (1999) Histomorphometric evaluation of extraction sockets and deficient alveolar ridges treated with allograft and barrier membrane: a pilot study. Int J Oral Maxillofac Implants 14(3):407–416

    PubMed  CAS  Google Scholar 

  25. Sy IP, Perio D (2001) Site development in periodontal therapy-alveolar bone augmentation as an adjunct to endosseous implant placement. Compend Contin Educ Dent 22(10):821–826, 828, 830 passim; quiz 836

    PubMed  CAS  Google Scholar 

  26. Wiesen M, Kitzis R (1998) Preservation of the alveolar ridge at implant sites. Periodontal Clin Investig 20(2):17–20

    PubMed  CAS  Google Scholar 

  27. Yang J, Lee HM, Vernino A (2000) Ridge preservation of dentition with severe periodontitis. Compend Contin Educ Dent 21(7):579–583; quiz 584

    PubMed  CAS  Google Scholar 

  28. Dies F, et al. (1996) Bone regeneration in extraction sites after immediate placement of an e-PTFE membrane with or without a biomaterial. A report on 12 consecutive cases. Clin Oral Implants Res 7(3):277–285

    Article  PubMed  CAS  Google Scholar 

  29. Araujo MG, et al. (2005) Ridge alterations following implant placement in fresh extraction sockets: an experimental study in the dog. J Clin Periodontol 32(6):645–652

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Rothamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothamel, D., Schwarz, F., Herten, M. et al. Kieferkammveränderungen nach Versorgung frischer Extraktionsalveolen mit polylactidvernetzten ß-TCP Wurzelreplikaten – eine histomorphometrische Tierstudie. Mund Kiefer GesichtsChir 11, 89–97 (2007). https://doi.org/10.1007/s10006-007-0050-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-007-0050-z

Schlüsselwörter

Keywords

Navigation