Skip to main content

Advertisement

Log in

Human-induced Trophic Cascades and Ecological Regime Shifts in the Baltic Sea

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The ecosystems of coastal and enclosed seas are under increasing anthropogenic pressure worldwide, with Chesapeake Bay, the Gulf of Mexico and the Black and Baltic Seas as well known examples. We use an ecosystem model (Ecopath with Ecosim, EwE) to show that reduced top-down control (seal predation) and increased bottom-up forcing (eutrophication) can largely explain the historical dynamics of the main fish stocks (cod, herring and sprat) in the Baltic Sea between 1900 and 1980. Based on these results and the historical fish stock development we identify two major ecological transitions. A shift from seal to cod domination was caused by a virtual elimination of marine mammals followed by a shift from an oligotrophic to a eutrophic state. A third shift from cod to clupeid domination in the late 1980s has previously been explained by overfishing of cod and climatic changes. We propose that the shift from an oligotrophic to a eutrophic state represents a true regime shift with a stabilizing mechanism for a hysteresis phenomenon. There are also mechanisms that could stabilize the shift from a cod to clupeid dominated ecosystem, but there are no indications that the ecosystem has been pushed that far yet. We argue that the shifts in the Baltic Sea are a consequence of human impacts, although variations in climate may have influenced their timing, magnitude and persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Alheit J, Möllmann C, Dutz J, Kornilovs G, Loewe P, Mohrholz V, Wasmund N. 2005. Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES J Mar Sci 62:1205–15

    Article  Google Scholar 

  • Blomqvist S, Gunnars A, Elmgren R. 2004. Why the limiting nutrient differs between temperate coastal seas and freshwater lakes: a matter of salt. Limnol Oceanogr 49:2236–41

    Article  Google Scholar 

  • Casini M, Cardinale M, Hjelm J. 2006. Inter-annual variation in herring, Clupea harengus, and sprat, Sprattus sprattus, condition in the central Baltic Sea: what gives the tune? Oikos 112:638–50

    Article  Google Scholar 

  • Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML, Bade D, Cottingham KL, Essington TE, Houser JN, Schindler DE. 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol Monogr 71:163–86

    Google Scholar 

  • Carpenter SR. 2003. Regime shifts in lake ecosystems: pattern and variation. Oldendorf/Luhe: Ecology Institute. 199p

    Google Scholar 

  • Christensen V, Walters CJ, Pauly D. 2005. Ecopath with Ecosim: a user’s guide. Vancouver: Fisheries Centre, University of British Columbia. 154 pp

    Google Scholar 

  • Conley DJ, Humborg C, Rahm L, Savchuk OP, Wulff F. 2002. Hypoxia in the Baltic Sea and Basin-scale changes in phosphorus biogeochemistry. Environ Sci Technol 36:5315–20

    Article  PubMed  CAS  Google Scholar 

  • De Roos AM, Persson L. 2002. Size-dependent life history traits promote catastrophic collapses of top predators. Proc Natl Acad Sci USA 99:12907–12

    Article  PubMed  CAS  Google Scholar 

  • deYoung B, Harris R, Alheit J, Beaugrand G, Mantua N, Shannon L. 2004. Detecting regime shifts in the ocean: data considerations. Prog Oceanogr 60:143–64

    Article  Google Scholar 

  • Döscher R, Meier HEM. 2004. Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea. Ambio 33:242–8

    Article  PubMed  Google Scholar 

  • Elmgren R. 1984. Trophic dynamics in the enclosed, brackish Baltic Sea. Rapports et Procès-Verbaux des Réunions Cons int Explor Mer 183:152–69

    Google Scholar 

  • Elmgren R. 1989. Man’s impact on the ecosystems of the Baltic Sea: energy flows today and at the turn of the century. Ambio 18:326–32

    Google Scholar 

  • FAO. 2007. FAO Fisheries Department, Fishery Information, Data and Statistics Unit. Data extracted from the dataset Capture Production

  • Fonselius S. 1981. Oxygen and hydrogen sulphide conditions in the Baltic Sea. Mar Pollut Bull 12:187–94

    Article  CAS  Google Scholar 

  • Fonselius S, Valderrama J. 2003. One hundred years of hydrographic measurements in the Baltic Sea. J Sea Res 49:229–41

    Article  Google Scholar 

  • Frank KT, Petrie B, Choi JS, Leggett WC. 2005. Trophic Cascades in a formerly cod-dominated ecosystem. Science 308:1621–3

    Article  PubMed  CAS  Google Scholar 

  • Hallberg RO. 1974. Paleoredox conditions in the Eastern Gotland Basin during the recent centuries. Havsforskningsinst. Skr. 238:3–16

    CAS  Google Scholar 

  • Hänninen J, Vuorinen I, Hjelt P. 2000. Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnol Oceanogr 45:703–10

    Article  Google Scholar 

  • Hansson S, Hjerne O, Harvey C, Kitchell JF, Cox SP, Essington TE. 2007. Managing Baltic sea fisheries under contrasting production and Predation regimes – ecosystem model analyses. Ambio 36:265–71

    Article  PubMed  CAS  Google Scholar 

  • Hansson S, Rudstam LG. 1990. Eutrophication and Baltic fish communities. Ambio 19:123–5

    Google Scholar 

  • Harding KC, Härkönen TJ. 1999. Development in the Baltic grey seal (Halichoerus grypus) and ringed seal (Phoca hispida) populations during the 20th Century. Ambio 28:619–27

    Google Scholar 

  • Harvey CJ, Cox CP, Essington TE, Hansson S, Kitchell JF. 2003. An ecosystem model of food web and fisheries interactions in the Baltic Sea. ICES J Mar Sci 60:939–50

    Article  Google Scholar 

  • Hessle C. 1923. Undersökningar rörande torsken (Gadus callarias, L.) i mellersta Östersjön och Bottenhavet. Meddelanden från Kungliga Lantbruksstyrelsen 243:21–74

    Google Scholar 

  • Hinrichsen H-H, Möllmann C, Voss R, Köster FW, Kornilovs G. 2002. Biophysical modeling of larval Baltic cod (Gadus morhua) growth and survival. Can J Fish Aquat Sci 59:1858–73

    Article  Google Scholar 

  • Hoffmann M, Johnsson H, Gustavson A, Grimvall A. 2000. Leaching of nitrogen in Swedish agriculture—a historical perspective. Agric Ecosyst Environ 80:277–90

    Article  CAS  Google Scholar 

  • Holmgren M, Scheffer M. 2001. El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems 4:151–9

    Article  Google Scholar 

  • Hughes T, Bellwood DR, Folke C, Steneck RS, Wilson J. 2005. New paradigms for supporting the resilience of marine ecosystems. Trends Ecol Evol 20:380–386

    Article  PubMed  Google Scholar 

  • ICES. 2001. Report of the study group on multispecies predictions in the Baltic (ICES CM 2001/H:04). Copenhagen: ICES

  • ICES. 2004a. Report of the Baltic Sea Fisheries Assessment Working Group (ICES CM 2004/ACFM: 22). Copenhagen: ICES

  • ICES. 2004b. Report of the Herring Assessment Working Group for the Area South of 62°N (HAWG), (ICES CM 2004/ACFM: 18). Copenhagen: ICES

  • ICES. 2006. Advice from the ICES Advisory Committee on Fishery Management http://www.ices.dk/committe/acfm/comwork/report/2006/may/cod-2532.pdf

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, others. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–38

    Article  PubMed  CAS  Google Scholar 

  • Johansson L, Wallström K. 2001. Urban impact in the history of water quality in the Stockholm archipelago. Ambio 30:277–81

    Article  PubMed  CAS  Google Scholar 

  • Jonsson A, Ebenman B. 2001. Are certain life histories particularly prone to local extinction? J Theor Biol 209:455–63

    Article  PubMed  CAS  Google Scholar 

  • Karlson K, Rosenberg R, Bonsdorff E. 2002. Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters—a review. Oceanogr Mar Biol 40:427–89

    Google Scholar 

  • Köster FW, Möllmann C. 2000. Trophodynamic control by clupeid predators on recruitment success in Baltic cod? ICES J Mar Sci 57:310–23

    Article  Google Scholar 

  • Köster FW, Möllmann C, Hinirchsen H-H, Wieland K, Tomkiewicz J, Kraus G, Voss R, Makarchouk A, Mackenzie B, St John MA, Schnack D, Rohlf N, Linkowski T, Beyer JE. 2005. Baltic cod recruitment e the impact of climate variability on key processes. ICES J Mar Sci 62:1408–25

    Article  Google Scholar 

  • Larsson U, Elmgren R, Wulff F. 1985. Eutrophication and the Baltic Sea—causes and consequences. Ambio 14:9–14

    CAS  Google Scholar 

  • Larsson U, Hajdu S, Walve J, Elmgren R. 2001. Estimating Baltic nitrogen fixation from the summer increase in upper mixed layer total nitrogen. Limnol Oceanogr 46:811–20

    Article  CAS  Google Scholar 

  • Laurila SK, Laakkonen SJ. 2004. The municipal continuum: research on maritime water pollution in Helsinki in the 20th century. Boreal Environ Res 9:529–41

    Google Scholar 

  • MacKenzie BR, Alheit J, Conley DJ, Holm P, Kinze CC. 2002. Ecological hypotheses for a historical reconstruction of upper trophic level biomass in the Baltic Sea. Can J Fish Aquat Sci 59:173–90

    Google Scholar 

  • MacKenzie BR, Köster FW. 2004. Fish production and climate: sprat in the Baltic Sea. Ecology 85:784–94

    Article  Google Scholar 

  • Matthäus W. Franck H. 1992. Characteristics of major Baltic inflows—a statistical analysis. Cont Shelf Res 12:1375–400

    Article  Google Scholar 

  • Möllmann C, Kornilovs G, Sidrevics L. 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. J Plankton Res 22:2015–38

    Article  Google Scholar 

  • Möllmann C, Kornilovs G, Fetter M, Köster FW. 2004. Feeding ecology of central Baltic Sea herring and sprat. J Fish Biol 65:1563–81

    Article  Google Scholar 

  • Nausch G, Matthäus W, Feistel R. 2003. Hydrographic and hydrochemical conditions in the Gotland Deep area between 1992 and 2003. Oceanologia 45:557–69

    Google Scholar 

  • Nehring D, Matthäus W. 1991. Current trends in hydrographic and chemical parameters and eutrophication in the Baltic Sea. Internationale Revue der Gesamten Hydrobiologie 76:297–316

    Article  CAS  Google Scholar 

  • Niemi Å. 1979. Blue-green algal blooms and N:P ratio in the Baltic Sea. Acta Botannica Fennica 110:57–61

    CAS  Google Scholar 

  • Österblom H, Casini M, Olsson O, Bignert A. 2006. Fish, seabirds and trophic cascades in the Baltic Sea. Mar Ecol Prog Ser 323:233–8

    Article  Google Scholar 

  • Poutanen E-L, Nikkilä K. 2001. Carotenoid pigments as tracers of cyanobacterial blooms in recent and post-glacial sediments of the Baltic Sea. Ambio 30:179–83

    Article  PubMed  CAS  Google Scholar 

  • Rönner U. 1985. Nitrogen transformations in the Baltic Proper: denitrification counteracts eutrophication. Ambio 14:134–8

    Google Scholar 

  • Rudstam LG, Aneer G, Hildén M. 1994. Top-down control in the pelagic Baltic ecosystem. Dana 10:105–29

    Google Scholar 

  • Sandberg J, Elmgren R, Wulff F. 2000. Carbon flows in Baltic Sea food webs—a re-evaluation using a mass balance approach. J Mar Syst 25:249–60

    Article  Google Scholar 

  • Sandén P, Håkansson B. 1996. Long-term trends in Secchi depth in the Baltic Sea. Limnol Oceanogr 41:346–51

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:591–6

    Article  PubMed  CAS  Google Scholar 

  • Schinke H, Matthaus W. 1998 On the causes of major Baltic inflows—an analysis of long time series. Cont Shelf Res 18:67–97

    Article  Google Scholar 

  • Schneider B, Kuss J. 2004. Past and present productivity of the Baltic Sea as inferred from pCO2 data. Cont Shelf Res 24:1611–22

    Article  Google Scholar 

  • Segerstråle SG. 1965. On the salinity conditions off the south coast of Finland since 1950, with comments on some remarkable hydrographical and biological phenomena in the Baltic area during this period. Commentationes Biologicae 28:2–28

    Google Scholar 

  • Shurin AT. 1960. Characteristics of the Bottom Fauna in the Eastern Baltic as Observed in 1959 (ICES CM. 109). Copenhagen: ICES

  • Söderberg S. 1972. Sälens födoval och skadegörelse på laxfisket i Östersjön. Stockholm: Swedish Museum of Natural History

  • Sokolov A, Andrejev O, Wulff F, Rodriguez Medina M. 1997. The data assimilation system for data analysis in the Baltic Sea. Systems Ecology Contributions. No. 3, 66 pp. Stockholm University, Stockholm, Sweden

  • Stigebrandt A. 1991. Computations of oxygen fluxes through the sea-surface and the net production of organic-matter with application to the Baltic and adjacent seas. Limnol Oceanogr 36:444–54

    Article  CAS  Google Scholar 

  • Svärdson G. 1955. Tumlarens inverkan på laxfångsten. Svensk Fiskeritidsskrift 11:151–4

    Google Scholar 

  • Thurow F. 1984. Growth production of the Baltic fish community. Rapports et Procès-Verbaux des Réunions Cons int Explor Mer 183:170–9

    Google Scholar 

  • Thurow F. 1997. Estimation of the total fish biomass in the Baltic Sea during the 20th century. ICES J Mar Sci 54:444–61

    Article  Google Scholar 

  • Thurow F. 1999a. On the Biomass of Cod in the Baltic Sea during the 20th Century (ICES CM 1999/Y3). Copenhagen: ICES

  • Thurow F (1999b) On herring biomass in the Baltic Sea during the 20th Century (ICES CM 1999/P: 04). Copenhagen: ICES

  • Vahtera E, Conley DJ, Gustafsson BG, Kuosa H, Pitkänen H, Savchuk OP, Tamminen T, Viitasalo M, Voss M, Wasmund N, Wulff W. 2007. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacterial blooms and complicate management in the Baltic Sea. Ambio 36:186–94.

    Article  PubMed  CAS  Google Scholar 

  • Vallin L, Nissling A, Westin L. 1999. Potential factors influencing reproductive success of Baltic cod, Gadus morhua: a review. Ambio 28:92–9

    Google Scholar 

  • Vuorinen I, Hänninen J, Viitasalo M, Helminen U, Kuosa H. 1998. Proportion of copepod biomass declines with decreasing salinity in the Baltic Sea. ICES J Mar Sci 55:767–74

    Article  Google Scholar 

  • Walker B, Meyers JA. 2004. Thresholds in ecological and social–ecological systems: a developing database. Ecology and Society 9:3. [online] URL: http://www.ecologyandsociety.org/vol9/iss2/art3/

  • Worm B, Lotze HK, Hillebrand H, Sommer U. 2002. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417:848–51

    Article  PubMed  CAS  Google Scholar 

  • Worm B, Myers RA. 2003. Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology 84:162–73

    Article  Google Scholar 

  • Wulff F, Savchuk OP, Sven H, Humborg C, Pollene F. 2005. The Baltic Sea 100 years ago. Abstracts of the 5th Baltic Sea Science Congress, Sopot, Poland, 20–24 June, 2005

Download references

Acknowledgments

Drs S. Carpenter, D. Karl and two anonymous referees Provided valuable comments on the manuscript. We thank A. Bignert for assistance with Figure 1, T. J. Härkönen and K. Harding for access to seal data and comments on a previous draft, C. Harvey for providing the original EwE model and support, a wide range of marine institutes for contributing oxygen data (for example, the Finnish Institute of Marine Research; Estonian Marine Institute; Institute of Aquatic Ecology, University of Latvia; Lithuanian Maritime Safety Administration; Inst. of Meteorology and Water Management, Poland; Sea Fisheries Institute, Poland; Bundesamt für Seeschifffahrt und Hydrographie, Germany; National Environmental Research Institute; Denmark; the Swedish Meteorological and Hydrological Institute, and many others), the Swedish EPA (marine monitoring), and the Swedish Foundation for Strategic Environmental Research, Mistra for funding. SH also received funding from the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, FORMAS, OH from the EU project FRAP (http://www.frap-project.net), and RE from the Swedish Research Council, VR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Österblom.

Electronic supplementary material

Below is the link to the electronic supplementary material.

APPENDIX (PDF 1.4 Mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Österblom, H., Hansson, S., Larsson, U. et al. Human-induced Trophic Cascades and Ecological Regime Shifts in the Baltic Sea. Ecosystems 10, 877–889 (2007). https://doi.org/10.1007/s10021-007-9069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-007-9069-0

Keywords

Navigation