Skip to main content
Log in

Changes in Stream Primary Producer Communities Resulting from Large-Scale Catastrophic Amphibian Declines: Can Small-Scale Experiments Predict Effects of Tadpole Loss?

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Global declines of amphibian populations are well documented, yet effects of these declines on freshwater ecosystem structure and function are poorly understood. Here we examine responses of algal primary producers to tadpole extirpation over differing spatial and temporal scales. We experimentally excluded tadpoles from artificial substrata within localized areas (0.25 m2) of two streams. One stream had an intact community of frogs (frog stream), and the other had recently experienced a catastrophic decline (frogless stream), leaving virtually no tadpoles. In the frog stream, there were significantly greater levels of chlorophyll a (+111%, P = 0.009), ash-free dry mass (AFDM) (+163%, P = 0.02), inorganic sediments (+114%, P = 0.001), and higher mean algal cell biovolume in tadpole exclusion treatments than in the tadpole access treatments. Correspondingly, overall AFDM-specific net primary production (NPP) increased by 38% (P = 0.001) and chlorophyll a-specific NPP increased by 29% (P = 0.001) in tadpole access treatments compared to tadpole exclusion treatments. Areal-specific NPP did not differ between treatments. There were no significant differences in chlorophyll a, AFDM, inorganic sediments, algal cell biovolume, or biomass-specific NPP between treatments in the frogless stream. Fifteen months after our experiments, a massive amphibian decline associated with a fungal pathogen occurred in the frog stream, resulting in the extirpation of over 90% of tadpoles. This extirpation was followed by significant increases in levels of chlorophyll a (269%, P = 0.001), AFDM (+220%, P < 0.001), and inorganic sediments (+140%, P = 0.001). Reach-scale NPP increased from −1587 to −810 mg DO m−2 d−1. Additionally, algal community composition shifted from a dominance of small adnate diatoms (pre-decline) to a dominance of large upright algal species (post-decline). Our experimental results, combined with algal monitoring at the reach scale, indicate that over the course of our study catastrophic amphibian losses have significant effects on stream ecosystem structure and function. Ecosystem-level impacts of tadpole extirpations were more dramatic than results from our small-scale, short-term experiments, which predicted the direction of change in response variables but underestimated the magnitude. However, the long-term stream ecosystem responses remain unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • APHA. 1985. Standard methods for the examination of water and wastewater, 16. Washington, DC: American Public Health Association.

    Google Scholar 

  • Bourrelly P, Manguin E. 1952. Algues d’eau douce de la Guadeloupe et dépendances. Paris, France: Centre National de la Recherche Sientifique, Société d’Edition d Enseignement Supérieur.

    Google Scholar 

  • Bronmark C, Rundle SD, Erlandsson A. 1991. Interactions between freshwater snails and tadpoles: competition and facilitation. Oecologia 87:8–18.

    Article  Google Scholar 

  • Carpenter SR, Frost TM, Heisey D, Kratz TK. 1989. Randomized intervention analysis and the interpretation of whole-ecosystem experiments. Ecology 70:1142–52.

    Article  Google Scholar 

  • Chapin FS III, Sala OS, Burke IC, Grime JP, Hooper DU, Lauenroth WK, Lombard A, Mooney HA, Mosier AR, Naeem S, Pacala SW, Roy J, Steffen WL, Tilman D. 1998. Ecosystem consequences of changing biodiversity. Science 48:45–52.

    Google Scholar 

  • de Sousa F. 1999. Fortuna reserva biologica. Panama: Editorial Universitaria.

    Google Scholar 

  • Dickman M. 1968. The effect of grazing by tadpoles on the structure of a periphyton community. Ecology 49:1188–90.

    Article  Google Scholar 

  • Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–66.

    Google Scholar 

  • Flecker AS. 1996. Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology 77:1845–54.

    Article  Google Scholar 

  • Foged N. 1984. Freshwater and littoral diatoms from Cuba. Bibliotheca Diatomologica 5:1–243.

    Google Scholar 

  • Greathouse EA, Pringle CM, McDowell WH. 2006. Do small-scale enclosure-exclosure experiments predict effects of large-scale extirpation of freshwater migratory fauna? Oecologia 149:709–17.

    Article  PubMed  Google Scholar 

  • Gresens SE. 1995. Grazer diversity, competition and the response of the periphyton community. Oikos 73:336–46.

    Article  Google Scholar 

  • Hauer FR, Resh VH. 1996. Benthic macroinvertebrates. In: Hauer FR, Lamberti GA, Eds. Methods in stream ecology. New York: Academic Press, Inc.. pp 339–69.

    Google Scholar 

  • Hector A, Bagchi R. 2007. Biodiversity and ecosystem multifunctionality. Nature 448:188–91.

    Article  PubMed  CAS  Google Scholar 

  • Heyer WR, Donnelly MA, McDiarmid RW, Hayek LC, Foster MS. 1994. Measuring and monitoring biological diversity: standard methods for amphibians. Washington DC: Smithsonian Institute Press.

    Google Scholar 

  • Hillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohany T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–24.

    Article  Google Scholar 

  • Holomuzki JR, Collins JP, Brunkow PE. 1994. Trophic cascades of fishless ponds by tiger salamander larvae. Oikos 71:55–64.

    Article  Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge D, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35.

    Article  Google Scholar 

  • Kiffney PM, Richardson JS. 2001. Interactions among nutrients, periphyton, and invertebrate and vertebrate (Ascaphus truei) grazers in experimental channels. Copeia 2001:422–9.

    Article  Google Scholar 

  • Kohler SL, Wiley MJ. 1997. Pathogen outbreaks reveal large-scale effects of competition in stream communities. Ecology 78:2164–76.

    Google Scholar 

  • Krammer K, Lange-Bertalot H. 1986. Bacillariophyceae 1. Teil: naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, Eds. Süsswasserflora von Mitteleuropas, 2/1. Jena: Gustav Fischer Verlag. pp 1–876.

    Google Scholar 

  • Krammer K, Lange-Bertalot H. 1988. Bacillariophyceae 2. Teil: bacillariaceae, epithemiaceae, surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, Eds. Süsswasserflora von Mitteleuropas, 2/2. Jena: Gustav Fischer Verlag. pp 1–596.

    Google Scholar 

  • Krammer K, Lange-Bertalot H. 1991. Bacillariophyceae 3. Teil: centrales, fragilariaceae, eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, Eds. Süsswasserflora von Mitteleuropas, 2/3. Jena: Gustav Fischer Verlag. pp 1–576.

    Google Scholar 

  • Kupferberg S. 1997. Facilitation of periphyton production by tadpole grazing: functional differences between species. Freshw Biol 37:427–39.

    Article  Google Scholar 

  • Lamberti GA, Gregory SV, Hawkins CP, Wildman RC, Ashkenas LR, Denicola DM. 1992. Plant-herbivore interactions in streams near Mount St. Helens. Freshw Biol 27:237–47.

    Article  Google Scholar 

  • Lamberti GA, Gregory SV, Ashkenas LR, Steinman AD, McIntire CD. 1989. Productive capacity of periphyton as a determinant of plant-herbivore interactions in streams. Ecology 70:1840–56.

    Article  Google Scholar 

  • Lips KR. 1999. Mass mortality and population declines of anurans at an upland site in western Panama. Conserv Biol 13:117–25.

    Article  Google Scholar 

  • Lips KR, Reeve J, Witters L. 2003. Ecological traits predicting amphibian population declines in Central America. Conserv Biol 17:1078–88.

    Article  Google Scholar 

  • Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP. 2006. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci U S A 103:3165–70.

    Article  PubMed  CAS  Google Scholar 

  • Loeb SL. 1981. An in situ method for measuring the primary productivity and standing crop of the epilithic periphyton community in lentic systems. Limnol Oceanogr 26:394–9.

    Article  Google Scholar 

  • Mallory MA, Richardson JS. 2005. Complex interactions of light, nutrients and consumer density in a stream periphyton-grazer (tailed frog tadpoles) system. J Anim Ecol 74:1020–8.

    Article  Google Scholar 

  • March JG, Pringle CM, Townsend MJ, Wilson AI. 2002. Effects of freshwater shrimp assemblages on benthic communities along an altitudinal gradient of a tropical island stream. Freshw Biol 47:377–90.

    Article  Google Scholar 

  • Marzolf ER, Mulholland PJ, Steinman AD. 1994. Improvements to the diurnal upstream–downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci 51:1591–9.

    Article  Google Scholar 

  • McCormick PV, Stevenson RJ. 1989. Effects of snail grazing on benthic algal community structure in different nutrient environments. J North Am Benthol Soc 8:162–72.

    Article  Google Scholar 

  • McCune B, Mefford MJ. 1999. PC-ORD. Multivariate analysis of ecological data. Version 4.37. Gleneden Beach, OR: MjM Software

  • McIntyre PB, Jones LE, Flecker AS, Vanni MJ. 2007. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc Natl Acad Sci 104:4461–6.

    Article  PubMed  CAS  Google Scholar 

  • Michener WK, Baerwald TJ, Firth P, Palmer MA, Rosenberger JL, Sandlin EA, Zimmerman H. 2001. Defining and unraveling biocomplexity. Bioscience 51:1018–24.

    Article  Google Scholar 

  • Osborne PL, McLachlan AJ. 1985. The effect of tadpoles on algal growth in temporary, rain-filled rock pools. Freshw Biol 15:77–87.

    Article  Google Scholar 

  • Owens M. 1974. Measurements on non-isolated natural communities in running waters. In: Vollenweider RA, Ed. A manual on methods for measuring primary production in aquatic environments. Oxford, UK: Blackwell Scientific. pp 111–9.

    Google Scholar 

  • Patrick R, Reimer CW. 1966. The diatoms of North America exclusive of Alaska and Hawaii. Volume I. Monogr Acad Nat Sci Philadelphia 13:1–688.

    Google Scholar 

  • Peckarsky BL, Cooper SD, McIntosh AR. 1997. Extrapolating from individual behavior populations and communities in streams. J North Am Benthol Soc 16:375–90.

    Article  Google Scholar 

  • Peterson CG, Boulton AJ. 1999. Stream permanence influences microalgal food availability to grazing tadpoles in arid-zone springs. Oecologia 118:340–52.

    Article  Google Scholar 

  • Polis GA. 1998. Stability is woven by complex webs. Nature 395:744–5.

    Article  Google Scholar 

  • Power ME. 1990. Resource enhancement by indirect effects of grazers: armored catfish, algae, and sediment. Ecology 71:897–904.

    Article  Google Scholar 

  • Pringle CM, Blake GA. 1994. Quantitative effects of Atyid shrimp (Decapoda), (Atyidae) on the depositional environment in a tropical stream – use of electricity for experimental exclusion. Can J Fish Aquat Sci 51:1443–50.

    Article  Google Scholar 

  • Pringle CM, Hamazaki T. 1997. Effects of fishes on algal response to storms in a tropical stream. Ecology 79:2432–42.

    Google Scholar 

  • Ranvestel AW. 2002. The influence of grazing tadpoles on algal biovolume, sediment dynamics, and aquatic insects in a tropical stream. MS thesis, Southern Illinois University

  • Ranvestel AW, Lips KR, Pringle CM, Whiles MR, Bixby RJ. 2004. Neotropical tadpoles influence stream benthos: evidence for the ecological consequences of decline in amphibian populations. Freshw Biol 49:274–85.

    Article  Google Scholar 

  • Regester KJ, Lips KR, Whiles MR. 2006. Energy flow through early life history stages of ambystomatid salamanders in midwestern forest ponds. Oecologia 147:303–14.

    Article  PubMed  Google Scholar 

  • Ricciardi A, Rasmussen JB. 1999. Extinction rates of North American freshwater fauna. Conserv Biol 13:1220–2.

    Article  Google Scholar 

  • Rosemond AD, Mulholland PJ, Elwood JW. 1993. Top-down and bottom-up control of stream periphyton: effects of nutrients and herbivores. Ecology 74:1264–80.

    Article  Google Scholar 

  • Sarnelle OJ. 1997. Daphnia effects on microzooplankton: comparisons of enclosure and whole-lake responses. Ecology 78:913–28.

    Google Scholar 

  • SAS, Version 8.0. SAS Institute, Cary, NC, USA

  • Schofield KA, Pringle CM, Meyer JL, Sutherland AB. 2001. The importance of crayfish in the breakdown of rhododendron leaf litter. Freshw Biol 46:1–14.

    Article  Google Scholar 

  • Seale DB. 1980. The influence of amphibian larvae on primary production, nutrient flux, and competition in a pond ecosystem. Ecology 61:1531–50.

    Article  Google Scholar 

  • Silva-Benavides AM. 1996. The epilithic diatom flora of a pristine and polluted river in Costa Rica, Central America. Diatom Res 11:105–42.

    Google Scholar 

  • Stebbins RC, Cohen NW. 1995. A natural history of amphibians. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Steinman AD. 1996. Effects of grazers on freshwater benthic algae. In: Stevenson RJ, Bothwell ML, Lowe RL, Eds. Algal ecology: freshwater benthic ecosystems. New York: Academic Press. pp 341–73.

    Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Waller RW. 2004. Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–6.

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Downing J. 1994. Biodiversity and stability in grasslands. Nature 367:363–5.

    Article  Google Scholar 

  • Whiles MR, Lips KR, Pringle CM, Kilham SS, Bixby RJ, Brenes R, Connelly S, Colon-Gaud JC, Hunte-Brown M, Huryn AD, Montgomery C, Peterson S. 2006. The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Front Ecol Environ 4:27–34.

    Article  Google Scholar 

  • Wissinger SA, Whiteman HH, Sparks GB, Rouse GL, Brown WS. 1999. Foraging trade-offs along a predator-permanence gradient in subalpine wetlands. Ecology 80:2102–16.

    Google Scholar 

  • Young RG, Huryn AD. 1998. Comment: improvements to the diurnal upstream downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci 55:1784–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by National Science Foundation grants DEB #0234386, DEB #0234149, DEB #0234179, DEB #0213851, and DEB #0130273. The Smithsonian Tropical Research Institute and Parque Nacional Omar Torrijos provided logistical support and fieldwork in Panamá. Special thanks to Jose Colon-Gaud for field assistance. Effie Greathouse and the Pringle and Rosemond lab groups provided critical comments on the manuscript. Two anonymous reviewers greatly improved earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Connelly.

Additional information

Author Contributions: S.C., C.M.P., M.R.W., K.R.L., and S.K. designed the study, S.C., C.M.P., R.B., M.R.W., K.R.L., and A.D.H. performed research, S.C., C.M.P., R.J.B., M.R.W., and A.D.H. analyzed data. S.C., C.M.P., and R.J.B. wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connelly, S., Pringle, C.M., Bixby, R.J. et al. Changes in Stream Primary Producer Communities Resulting from Large-Scale Catastrophic Amphibian Declines: Can Small-Scale Experiments Predict Effects of Tadpole Loss?. Ecosystems 11, 1262–1276 (2008). https://doi.org/10.1007/s10021-008-9191-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9191-7

Keywords

Navigation