Skip to main content
Log in

Complex gene–gene interactions in multiple sclerosis: a multifactorial approach reveals associations with inflammatory genes

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

The complex inheritance involved in multiple sclerosis (MS) risk has been extensively investigated, but our understanding of MS genetics remains rudimentary. In this study, we explore 51 single nucleotide polymorphisms (SNPs) in 36 candidate genes from the inflammatory pathway and test for gene–gene interactions using complementary case–control, discordant sibling pair, and trio family study designs. We used a sample of 421 carefully diagnosed MS cases and 96 unrelated, healthy controls; discordant sibling pairs from 146 multiplex families; and 275 trio families. We used multifactor dimensionality reduction to explore gene–gene interactions. Based on our analyses, we have identified several statistically significant models including both main effect models and two-locus, three-locus, and four-locus epistasis models that predict MS disease risk with between ∼61% and 85% accuracy. These results suggest that significant epistasis, or gene–gene interactions, may exist even in the absence of statistically significant individual main effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hauser SL, Goodin DS (2005) Multiple sclerosis and other demyelinating diseases. In: Kasper DL, Braunwalk E, Fauci AD, Hauser SL, Longo DL, Jameson JL (eds) Harrison’s principle of internal medicine, 16th edn. McGraw-Hill, New York

    Google Scholar 

  2. Oksenberg JR, Barcellos LF (2005) Multiple sclerosis genetics: leaving no stone unturned. Genes Immun 6:375–387

    Article  PubMed  CAS  Google Scholar 

  3. Ebers G (1999) Modelling multiple sclerosis. Nat Genet 23:258–259

    Article  PubMed  CAS  Google Scholar 

  4. Haines JL, Ter-Minassian M, Bazyk A, Gusella JF, Kim DJ, Terwedow H et al (1996) A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 13:469–471

    Article  PubMed  CAS  Google Scholar 

  5. Haines JL, Terwedow HA, Burgess K, Pericak-Vance MA, Rimmler JB, Martin ER et al (1998) Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum Mol Genet 7:1229–1234

    Article  PubMed  CAS  Google Scholar 

  6. Kenealy SJ, Herrel LA, Bradford Y, Schnetz-Boutaud N, Oksenberg JR, Hauser SL et al (2006) Examination of seven candidate regions for multiple sclerosis: strong evidence of linkage to chromosome 1q44. Genes Immun 7:73–76

    Article  PubMed  CAS  Google Scholar 

  7. Sawcer S, Jones HB, Feakes R, Gray J, Smaldon N, Chataway J et al (1996) A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 13:464–468

    Article  PubMed  CAS  Google Scholar 

  8. Sawcer S, Ban M, Maranian M, Yeo TW, Compston A, Kirby A et al (2005) A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 77:454–467

    Article  PubMed  Google Scholar 

  9. Barcellos LF, Oksenberg JR, Green AJ, Bucher P, Rimmler JB, Schmidt S et al (2002) Genetic basis for clinical expression in multiple sclerosis. Brain 125:150–158

    Article  PubMed  CAS  Google Scholar 

  10. Bellman R (1961) Adaptive control processes. Princeton University Press, Princeton

    Google Scholar 

  11. Concato J, Feinstein AR, Holford TR (1993) The risk of determining risk with multivariable models. Ann Intern Med 118:201–210

    PubMed  CAS  Google Scholar 

  12. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379

    Article  PubMed  CAS  Google Scholar 

  13. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF et al (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147

    Article  PubMed  CAS  Google Scholar 

  14. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  15. Barcellos LF, Oksenberg JR, Begovich AB, Martin ER, Schmidt S, Vittinghoff E et al (2003) HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 72:710–716

    Article  PubMed  CAS  Google Scholar 

  16. Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene–gene and gene–environment interactions. Bioinformatics 19:376–382

    Article  PubMed  CAS  Google Scholar 

  17. Ritchie MD, Hahn LW, Moore JH (2003) Power of multifactor dimensionality reduction for detecting gene–gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 24:150–157

    Article  PubMed  Google Scholar 

  18. Japkowicz N, Stephen S (2002) The class imbalance problem: a systematic study. Intelligent Data Analysis 6:429–450

    Google Scholar 

  19. Weiss GM, Provost F (2003) Learning when training data are costly: the effect of class distribution on tree induction. J Artif Intell Res 19:315–354

    Google Scholar 

  20. McDonnell GV, Kirk CW, Hawkins SA, Graham CA (2000) An evaluation of interleukin genes fails to identify clear susceptibility loci for multiple sclerosis. J Neurol Sci 176:4–12

    Article  PubMed  CAS  Google Scholar 

  21. Reboul J, Mertens C, Levillayer F, Eichenbaum-Voline S, Vilkoren T, Cournu I et al (2000) Cytokines in genetic susceptibility to multiple sclerosis: a candidate gene approach. French Multiple Sclerosis Genetics Group. J Neuroimmunol 102:107–112

    Article  PubMed  CAS  Google Scholar 

  22. Vandenbroeck K, Martino G, Marrosu M, Consiglio A, Zaffaroni M, Vaccargiu S et al (1997) Occurrence and clinical relevance of an interleukin-4 gene polymorphism in patients with multiple sclerosis. J Neuroimmunol 76:189–192

    Article  PubMed  Google Scholar 

  23. Barcellos LF, Begovich AB, Reynolds RL, Caillier SJ, Brassat D, Schmidt S et al (2004) Linkage and association with the NOS2A locus on chromosome 17q11 in multiple sclerosis. Ann Neurol 55:793–800

    Article  PubMed  CAS  Google Scholar 

  24. Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  CAS  Google Scholar 

  25. Candelaria PV, Backer V, Laing IA, Porsbjerg C, Nepper-Christensen S, de Klerk N et al (2005) Association between asthma-related phenotypes and the CC16 A38G polymorphism in an unselected population of young adult Danes. Immunogenetics 57:25–32

    Article  PubMed  CAS  Google Scholar 

  26. Menegatti E, Nardacchione A, Alpa M, Agnes C, Rossi D, Chiara M et al (2002) Polymorphism of the uteroglobin gene in systemic lupus erythematosus and IgA nephropathy. Lab Invest 82:543–546

    Article  PubMed  CAS  Google Scholar 

  27. Ohchi T, Shijubo N, Kawabata I, Ichimiya S, Inomata S, Yamaguchi A et al (2004) Polymorphism of Clara cell 10-kD protein gene of sarcoidosis. Am J Respir Crit Care Med 169:180–186

    Article  PubMed  Google Scholar 

  28. Ray R, Choi M, Zhang Z, Silverman GA, Askew D, Mukherjee AB (2005) Uteroglobin suppresses SCCA gene expression associated with allergic asthma. J Biol Chem 280:9761–9764

    Article  PubMed  CAS  Google Scholar 

  29. Goronzy JJ, Matteson EL, Fulbright JW, Warrington KJ, Chang-Miller A, Hunder GG et al (2004) Prognostic markers of radiographic progression in early rheumatoid arthritis. Arthritis Rheum 50:43–54

    Article  PubMed  Google Scholar 

  30. Hung CH, Chen LC, Zhang Z, Chowdhury B, Lee WL, Plunkett B et al (2004) Regulation of TH2 responses by the pulmonary Clara cell secretory 10-kd protein. J Allergy Clin Immunol 114:664–670

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Z, Kundu GC, Zheng F, Yuan CJ, Lee E, Westphal H et al (2000) Insight into the physiological function(s) of uteroglobin by gene-knockout and antisense-transgenic approaches. Ann N Y Acad Sci 923:210–233

    Article  PubMed  CAS  Google Scholar 

  32. Lucchinetti CF, Parisi J, Bruck W (2005) The pathology of multiple sclerosis. Neurol Clin 23:77–105, vi

    Article  PubMed  Google Scholar 

  33. Zhang Y, Da RR, Hilgenberg LG, Tourtellotte WW, Sobel RA, Smith MA et al (2005) Clonal expansion of IgA-positive plasma cells and axon-reactive antibodies in MS lesions. J Neuroimmunol 167:120–130

    Article  PubMed  CAS  Google Scholar 

  34. Loza MJ, Foster S, Peters SP, Penn RB (2006) Beta-agonists modulate T-cell functions via direct actions on type 1 and type 2 cells. Blood 107:2052–2060

    Article  PubMed  CAS  Google Scholar 

  35. Loop T, Bross T, Humar M, Hoetzel A, Schmidt R, Pahl HL et al (2004) Dobutamine inhibits phorbol–myristate–acetate-induced activation of nuclear factor-kappaB in human T lymphocytes in vitro. Anesth Analg 99:1508–1515

    Article  PubMed  Google Scholar 

  36. Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B et al (2004) Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell 14:303–317

    Article  PubMed  CAS  Google Scholar 

  37. Chorley BN, Li Y, Fang S, Park JA, Adler KB (2006) (R)-albuterol elicits antiinflammatory effects in human airway epithelial cells via iNOS. Am J Respir Cell Mol Biol 34:119–127

    Article  PubMed  CAS  Google Scholar 

  38. Martin ER, Ritchie MD, Hahn LW, Kang S, Moore JH (2005) A novel method to identify gene–gene effects in nuclear families: the MDR-PDT. Genet Epidemiol (in press)

  39. Brassat D, Motsinger AA, Caillier SJ, Erlich HA, Walker K, Steiner LL et al (2006) Multifactor dimensionality reduction reveals gene–gene interactions associated with multiple sclerosis susceptibility in African Americans. Genes Immun 7:310–315

    Article  PubMed  CAS  Google Scholar 

  40. Reich D, Patterson N, De Jager PL, McDonald GJ, Waliszewska A, Tandon A et al (2005) A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat Genet 37:1113–1118

    Article  PubMed  CAS  Google Scholar 

  41. Templeton A (2000) Epistasis and complex traits. In: Wade M, Broadie B III, Wolf J (eds) Epistasis and the evolutionary process. Oxford University Press, Oxford, pp 41–57

    Google Scholar 

Download references

Acknowledgments

We are grateful to the MS patients and their families for participating in this study. This work was funded by grants RG2901 from the National Multiple Sclerosis Society and by National Institutes of Health grants NS026799, GM31304, AG20135, GM62758, NS32830, and in part by HL65962, the Pharmacogenomics of Arrhythmia Therapy U01 site of the Pharmacogenetics Research Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marylyn D. Ritchie.

Additional information

Alison A. Motsinger and David Brassat contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motsinger, A.A., Brassat, D., Caillier, S.J. et al. Complex gene–gene interactions in multiple sclerosis: a multifactorial approach reveals associations with inflammatory genes. Neurogenetics 8, 11–20 (2007). https://doi.org/10.1007/s10048-006-0058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-006-0058-9

Keywords

Navigation