Skip to main content

Advertisement

Log in

Assessment of Alzheimer’s disease case–control associations using family-based methods

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

The genetics of Alzheimer’s disease (AD) is heterogeneous and remains only ill-defined. We have recently created a freely available and continuously updated online database (AlzGene; http://www.alzgene.org) for which we collect all published genetic association studies in AD and perform systematic meta-analyses on all polymorphisms with sufficient genotype data. In this study, we tested 27 genes (ACE, BDNF, CH25H, CHRNB2, CST3, CTSD, DAPK1, GALP, hCG2039140, IL1B, LMNA, LOC439999, LOC651924, MAPT, MTHFR, MYH13, PCK1, PGBD1, PRNP, PSEN1, SORCS1, SORL1, TF, TFAM, TNK1, GWA_14q32.13, and GWA_7p15.2), all showing significant association with AD risk in the AlzGene meta-analyses, in a large collection of family-based samples comprised of 4,180 subjects from over 1,300 pedigrees. Overall, we observe significant association with risk for AD and polymorphisms in ACE, CHRNB2, TF, and an as yet uncharacterized locus on chromosome 7p15.2 [rs1859849]. For all four loci, the association was observed with the same alleles as in the AlzGene meta-analyses. The convergence of case–control and family-based findings suggests that these loci currently represent the most promising AD gene candidates. Further fine-mapping and functional analyses are warranted to elucidate the potential biochemical mechanisms and epidemiological relevance of these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23. doi:10.1038/ng1934

    Article  CAS  PubMed  Google Scholar 

  2. Bertram L, Blacker D, Crystal A, Mullin K, Keeney D, Jones J et al (2000) Candidate genes showing no evidence for association or linkage with Alzheimer’s disease using family-based methodologies. Exp Gerontol 35:1353–1361. doi:10.1016/S0531-5565(00)00193-5

    Article  CAS  PubMed  Google Scholar 

  3. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F et al (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39:168–177. doi:10.1038/ng1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laird NM, Lange C (2006) Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet 7:385–394. doi:10.1038/nrg1839

    Article  CAS  PubMed  Google Scholar 

  5. Blacker D, Haines JL, Rodes L, Terwedow H, Go RC, Harrell LE et al (1997) ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology 48:139–147

    Article  CAS  PubMed  Google Scholar 

  6. Bertram L, Hiltunen M, Parkinson M, Ingelsson M, Lange C, Ramasamy K et al (2005) Family-based association between Alzheimer’s disease and variants in UBQLN1. N Engl J Med 352:884–894. doi:10.1056/NEJMoa042765

    Article  CAS  PubMed  Google Scholar 

  7. Sayed-Tabatabaei FA, Oostra BA, Isaacs A, van Duijn CM, Witteman JC (2006) ACE polymorphisms. Circ Res 98:1123–1133. doi:10.1161/01.RES.0000223145.74217.e7

    Article  CAS  PubMed  Google Scholar 

  8. Rabinowitz D, Laird N (2000) A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 50:211–223. doi:10.1159/000022918

    Article  CAS  PubMed  Google Scholar 

  9. Fisher RA (1932) Statistical methods for research workers. Oliver and Boyd, Edinburgh

    Google Scholar 

  10. Witte JS, Gauderman WJ, Thomas DC (1999) Asymptotic bias and efficiency in case-control studies of candidate genes and gene-environment interactions: basic family designs. Am J Epidemiol 149:693–705

    Article  CAS  PubMed  Google Scholar 

  11. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188. doi:10.1016/0197-2456(86)90046-2

    Article  CAS  PubMed  Google Scholar 

  12. Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM (2004) PBAT: tools for family-based association studies. Am J Hum Genet 74:367–369. doi:10.1086/381563

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A et al (2007) Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet 16:865–873. doi:10.1093/hmg/ddm031

    Article  CAS  PubMed  Google Scholar 

  14. Kauwe JS, Wang J, Mayo K, Morris JC, Fagan AM, Holtzman DM, Goate AM (2009) Alzheimer’s disease risk variants show association with cerebrospinal fluid amyloid beta. Neurogenetics. doi:10.1007/s10048-008-0150-4

  15. Takeda S, Sato N, Ogihara T, Morishita R (2008) The renin-angiotensin system, hypertension and cognitive dysfunction in Alzheimer’s disease: new therapeutic potential. Front Biosci 13:2253–2265. doi:10.2741/2839

    Article  CAS  PubMed  Google Scholar 

  16. Keavney B, McKenzie CA, Connell JM, Julier C, Ratcliffe PJ, Sobel E et al (1998) Measured haplotype analysis of the angiotensin-I converting enzyme gene. Hum Mol Genet 7:1745–1751. doi:10.1093/hmg/7.11.1745

    Article  CAS  PubMed  Google Scholar 

  17. Kehoe PG, Katzov H, Feuk L, Bennet AM, Johansson B, Wiman B et al (2003) Haplotypes extending across ACE are associated with Alzheimer’s disease. Hum Mol Genet 12:859–867. doi:10.1093/hmg/ddg094

    Article  CAS  PubMed  Google Scholar 

  18. Miners JS, Ashby E, Van Helmond Z, Chalmers KA, Palmer LE, Love S et al (2008) Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer’s disease, and relationship of perivascular ACE-1 to cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 34:181–193. doi:10.1111/j.1365–2990.2007.00885.x

    Article  CAS  PubMed  Google Scholar 

  19. Hu J, Igarashi A, Kamata M, Nakagawa H (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biol Chem 276:47863–47868

    CAS  PubMed  Google Scholar 

  20. Eckman EA, Adams SK, Troendle FJ, Stodola BA, Kahn MA, Fauq AH et al (2006) Regulation of steady-state beta-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J Biol Chem 281:30471–30478. doi:10.1074/jbc.M605827200

    Article  CAS  PubMed  Google Scholar 

  21. Hemming ML, Selkoe DJ, Farris W (2007) Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid beta-protein metabolism in mouse models of Alzheimer disease. Neurobiol Dis 26:273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brewer GJ (2007) Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer’s disease. Exp Biol Med (Maywood) 232:323–335

    CAS  Google Scholar 

  23. Loeffler DA, Connor JR, Juneau PL, Snyder BS, Kanaley L, DeMaggio AJ et al (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J Neurochem 65:710–724

    Article  CAS  PubMed  Google Scholar 

  24. Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 94:9866–9868. doi:10.1073/pnas.94.18.9866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F et al (2002) Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem 82:1137–1147

    Article  CAS  PubMed  Google Scholar 

  26. Lee PL, Ho NJ, Olson R, Beutler E (1999) The effect of transferrin polymorphisms on iron metabolism. Blood Cells Mol Dis 25:374–379. doi:10.1006/bcmd.1999.0267

    Article  CAS  PubMed  Google Scholar 

  27. Zatta P, Messori L, Mauri P, van Rensburg SJ, van Zyl J, Gabrielli S et al (2005) The C2 variant of human serum transferrin retains the iron binding properties of the native protein. Biochim Biophys Acta 1741:264–270

    Article  CAS  PubMed  Google Scholar 

  28. Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K et al (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J 274:3799–3845. doi:10.1111/j.1742–4658.2007.05935.x

    Article  CAS  PubMed  Google Scholar 

  29. Oddo S, LaFerla FM (2006) The role of nicotinic acetylcholine receptors in Alzheimer’s disease. J Physiol (Paris) 99:172–179. doi:10.1016/j.jphysparis.2005.12.080

    Article  CAS  Google Scholar 

  30. Tohgi H, Utsugisawa K, Yoshimura M, Nagane Y, Mihara M (1998) Age-related changes in nicotinic acetylcholine receptor subunits alpha4 and beta2 messenger RNA expression in postmortem human frontal cortex and hippocampus. Neurosci Lett 245:139–142. doi:10.1016/S0304-3940(98)00205-5

    Article  CAS  PubMed  Google Scholar 

  31. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278:1349–1356. doi:10.1001/jama.278.16.1349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all families for participating in this study. This work was sponsored by grants from the NIA (to L.B.), NIMH (to R.T.), and the Extendicare Foundation (to L.B.). The AlzGene database project is funded by the Cure Alzheimer’s Fund (to L.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Bertram.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 908 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schjeide, BM.M., McQueen, M.B., Mullin, K. et al. Assessment of Alzheimer’s disease case–control associations using family-based methods. Neurogenetics 10, 19–25 (2009). https://doi.org/10.1007/s10048-008-0151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-008-0151-3

Keywords

Navigation