Skip to main content

Advertisement

Log in

Examination of association of genes in the serotonin system to autism

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Autism is characterized as one of the pervasive developmental disorders, a spectrum of often severe behavioral and cognitive disturbances of early development. The high heritability of autism has driven multiple efforts to identify genetic variation that increases autism susceptibility. Numerous studies have suggested that variation in peripheral and central metabolism of serotonin (5-hydroxytryptamine) may play a role in the pathophysiology of autism. We screened 403 autism families for 45 single nucleotide polymorphisms in ten serotonin pathway candidate genes. Although genome-wide linkage scans in autism have provided support for linkage to various loci located within the serotonin pathway, our study does not provide strong evidence for linkage to any specific gene within the pathway. The most significant association (p = 0.0002; p = 0.02 after correcting for multiple comparisons) was found at rs1150220 (HTR3A) located on chromosome 11 (∼113 Mb). To test specifically for multilocus effects, multifactor dimensionality reduction was employed, and a significant two-way interaction (p value = 0.01) was found between rs10830962, near MTNR1B (chromosome11; 92,338,075 bp), and rs1007631, near SLC7A5 (chromosome16; 86,413,596 bp). These data suggest that variation within genes on the serotonin pathway, particularly HTR3A, may have modest effects on autism risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Fombonne E (1999) The epidemiology of autism: a review. Psychol Med 29:769–786. doi:10.1017/S0033291799008508

    Article  PubMed  CAS  Google Scholar 

  2. Williams JG, Higgins JP, Brayne CE (2006) Systematic review of prevalence studies of autism spectrum disorders. Arch Dis Child 91:8–15. doi:10.1136/adc.2004.062083

    Article  PubMed  CAS  Google Scholar 

  3. Fombonne E (2003) Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord 33:365–382. doi:10.1023/A:1025054610557

    Article  PubMed  Google Scholar 

  4. Veenstra-Vanderweele J, Christian SL, Cook EH Jr (2004) Autism as a paradigmatic complex genetic disorder. Annu Rev Genomics Hum Genet 5:379–405. doi:10.1146/annurev.genom.5.061903.180050

    Article  PubMed  CAS  Google Scholar 

  5. Veenstra-Vanderweele J, Cook EH Jr (2004) Molecular genetics of autism spectrum disorder. Mol Psychiatry 9:819–832. doi:10.1038/sj.mp.4001505

    Article  PubMed  CAS  Google Scholar 

  6. Folstein S, Rutter M (1977) Genetic influences and infantile autism. Nature 265:726–728. doi:10.1038/265726a0

    Article  PubMed  CAS  Google Scholar 

  7. Rutter M, Macdonald H, Le CA, Harrington R, Bolton P, Bailey A (1990) Genetic factors in child psychiatric disorders—II. Empirical findings. J Child Psychol Psychiatry 31:39–83. doi:10.1111/j.1469-7610.1990.tb02273.x

    Article  PubMed  CAS  Google Scholar 

  8. Rutter M, Bolton P, Harrington R, Le CA, Macdonald H, Simonoff E (1990) Genetic factors in child psychiatric disorders—I. A review of research strategies. J Child Psychol Psychiatry 31:3–37. doi:10.1111/j.1469-7610.1990.tb02272.x

    Article  PubMed  CAS  Google Scholar 

  9. Piven J (2001) The broad autism phenotype: a complementary strategy for molecular genetic studies of autism. Am J Med Genet 105:34–35. doi:10.1002/1096-8628(20010108)105:1<34::AID-AJMG1052>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  10. Pickles A, Bolton P, Macdonald H, Bailey A, Le CA, Sim CH, Rutter M (1995) Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: a twin and family history study of autism. Am J Hum Genet 57:717–726

    PubMed  CAS  Google Scholar 

  11. Barrett S, Beck JC, Bernier R, Bisson E, Braun TA, Casavant TL, Childress D, Folstein SE, Garcia M, Gardiner MB, Gilman S, Haines JL, Hopkins K, Landa R, Meyer NH, Mullane JA, Nishimura DY, Palmer P, Piven J, Purdy J, Santangelo SL, Searby C, Sheffield V, Singleton J, Slager S (1999) An autosomal genomic screen for autism. Collaborative linkage study of autism. Am J Med Genet 88:609–615. doi:10.1002/(SICI)1096-8628(19991215)88:6<609::AID-AJMG7>3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  12. Buxbaum JD, Silverman JM, Smith CJ, Kilifarski M, Reichert J, Hollander E, Lawlor BA, Fitzgerald M, Greenberg DA, Davis KL (2001) Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. Am J Hum Genet 68:1514–1520. doi:10.1086/320588

    Article  PubMed  CAS  Google Scholar 

  13. International Molecular Genetic Study Autism Consortium (IMGSAC) (2001) A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 69:570–581. doi:10.1086/323264

    Article  Google Scholar 

  14. Liu J, Nyholt DR, Magnussen P, Parano E, Pavone P, Geschwind D, Lord C, Iversen P, Hoh J, Ott J, Gilliam TC (2001) A genomewide screen for autism susceptibility loci. Am J Hum Genet 69:327–340. doi:10.1086/321980

    Article  PubMed  CAS  Google Scholar 

  15. Philippe A, Martinez M, Guilloud-Bataille M, Gillberg C, Rastam M, Sponheim E, Coleman M, Zappella M, Aschauer H, Van ML, Penet C, Feingold J, Brice A, Leboyer M (1999) Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study. Hum Mol Genet 8:805–812. doi:10.1093/hmg/8.5.805

    Article  PubMed  CAS  Google Scholar 

  16. Risch N, Spiker D, Lotspeich L, Nouri N, Hinds D, Hallmayer J, Kalaydjieva L, McCague P, Dimiceli S, Pitts T, Nguyen L, Yang J, Harper C, Thorpe D, Vermeer S, Young H, Hebert J, Lin A, Ferguson J, Chiotti C, Wiese-Slater S, Rogers T, Salmon B, Nicholas P, Petersen PB, Pingree C, McMahon W, Wong DL, Cavalli-Sforza LL, Kraemer HC, Myers RM (1999) A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet 65:493–507. doi:10.1086/302497

    Article  PubMed  CAS  Google Scholar 

  17. Shao Y, Wolpert CM, Raiford KL, Menold MM, Donnelly SL, Ravan SA, Bass MP, McClain C, von WL, Vance JM, Abramson RH, Wright HH, shley-Koch A, Gilbert JR, DeLong RG, Cuccaro ML, Pericak-Vance MA (2002) Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet 114:99–105. doi:10.1002/ajmg.10153

    Article  PubMed  Google Scholar 

  18. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, Vincent JB, Skaug JL, Thompson AP, Senman L, Feuk L, Qian C, Bryson SE, Jones MB, Marshall CR, Scherer SW, Vieland VJ, Bartlett C, Mangin LV, Goedken R, Segre A, Pericak-Vance MA, Cuccaro ML, Gilbert JR, Wright HH, Abramson RK, Betancur C, Bourgeron T, Gillberg C, Leboyer M, Buxbaum JD, Davis KL, Hollander E, Silverman JM, Hallmayer J, Lotspeich L, Sutcliffe JS, Haines JL, Folstein SE, Piven J, Wassink TH, Sheffield V, Geschwind DH, Bucan M, Brown WT, Cantor RM, Constantino JN, Gilliam TC, Herbert M, Lajonchere C, Ledbetter DH, Lese-Martin C, Miller J, Nelson S, Samango-Sprouse CA, Spence S, State M, Tanzi RE, Coon H, Dawson G, Devlin B, Estes A, Flodman P, Klei L, McMahon WM, Minshew N, Munson J, Korvatska E, Rodier PM, Schellenberg GD, Smith M, Spence MA, Stodgell C, Tepper PG, Wijsman EM, Yu CE, Roge B, Mantoulan C, Wittemeyer K, Poustka A, Felder B, Klauck SM, Schuster C, Poustka F, Bolte S, Feineis-Matthews S, Herbrecht E, Schmotzer G, Tsiantis J, Papanikolaou K, Maestrini E, Bacchelli E, Blasi F, Carone S, Toma C, Van EH, de JM, Kemner C, Koop F, Langemeijer M, Hijimans C, Staal WG, Baird G, Bolton PF, Rutter ML, Weisblatt E, Green J, Aldred C, Wilkinson JA, Pickles A, Le CA, Berney T, McConachie H, Bailey AJ, Francis K, Honeyman G, Hutchinson A, Parr JR, Wallace S, Monaco AP, Barnby G, Kobayashi K, Lamb JA, Sousa I, Sykes N, Cook EH, Guter SJ, Leventhal BL, Salt J, Lord C, Corsello C, Hus V, Weeks DE, Volkmar F, Tauber M, Fombonne E, Shih A (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39:319–328. doi:10.1038/ng1985

    Article  PubMed  CAS  Google Scholar 

  19. Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M, Rea A, Guy M, Lin S, Cook EH, Chakravarti A (2008) A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82:160–164. doi:10.1016/j.ajhg.2007.09.015

    Article  PubMed  CAS  Google Scholar 

  20. Nyholt DR (2001) Genetic case–control association studies—correcting for multiple testing. Hum Genet 109:564–567. doi:10.1007/s00439-001-0611-4

    Article  PubMed  CAS  Google Scholar 

  21. Stone JL, Merriman B, Cantor RM, Yonan AL, Gilliam TC, Geschwind DH, Nelson SF (2004) Evidence for sex-specific risk alleles in autism spectrum disorder. Am J Hum Genet 75:1117–1123. doi:10.1086/426034

    Article  PubMed  CAS  Google Scholar 

  22. Cantor RM, Kono N, Duvall JA, varez-Retuerto A, Stone JL, Alarcon M, Nelson SF, Geschwind DH (2005) Replication of autism linkage: fine-mapping peak at 17q21. Am J Hum Genet 76:1050–1056. doi:10.1086/430278

    Article  PubMed  CAS  Google Scholar 

  23. Schain RJ, Freedman DX (1961) Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Pediatr 58:315–320. doi:10.1016/S0022-3476(61)80261-8

    Article  PubMed  CAS  Google Scholar 

  24. Anderson GM, Gutknecht L, Cohen DJ, Brailly-Tabard S, Cohen JH, Ferrari P, Roubertoux PL, Tordjman S (2002) Serotonin transporter promoter variants in autism: functional effects and relationship to platelet hyperserotonemia. Mol Psychiatry 7:831–836. doi:10.1038/sj.mp.4001099

    Article  PubMed  CAS  Google Scholar 

  25. Cook EH, Leventhal BL (1996) The serotonin system in autism. Curr Opin Pediatr 8:348–354. doi:10.1097/00008480-199608000-00008

    Article  PubMed  CAS  Google Scholar 

  26. Anderson GM, Freedman DX, Cohen DJ, Volkmar FR, Hoder EL, McPhedran P, Minderaa RB, Hansen CR, Young JG (1987) Whole blood serotonin in autistic and normal subjects. J Child Psychol Psychiatry 28:885–900. doi:10.1111/j.1469-7610.1987.tb00677.x

    Article  PubMed  CAS  Google Scholar 

  27. Cook EH Jr, Leventhal BL, Freedman DX (1988) Free serotonin in plasma: autistic children and their first-degree relatives. Biol Psychiatry 24:488–491. doi:10.1016/0006-3223(88)90192-8

    Article  PubMed  Google Scholar 

  28. McDougle CJ, Naylor ST, Cohen DJ, Aghajanian GK, Heninger GR, Price LH (1996) Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 53:993–1000

    PubMed  CAS  Google Scholar 

  29. Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J, Chugani HT (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45:287–295. doi:10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  30. Cook EH Jr, Leventhal BL, Freedman DX (1988) Serotonin and measured intelligence. J Autism Dev Disord 18:553–559. doi:10.1007/BF02211873

    Article  PubMed  Google Scholar 

  31. Hollander E, Phillips A, Chaplin W, Zagursky K, Novotny S, Wasserman S, Iyengar R (2005) A placebo controlled crossover trial of liquid fluoxetine on repetitive behaviors in childhood and adolescent autism. Neuropsychopharmacology 30:582–589. doi:10.1038/sj.npp.1300627

    Article  PubMed  CAS  Google Scholar 

  32. Hollander E, Soorya L, Wasserman S, Esposito K, Chaplin W, Anagnostou E (2006) Divalproex sodium vs. placebo in the treatment of repetitive behaviours in autism spectrum disorder. Int J Neuropsychopharmacol 9:209–213. doi:10.1017/S1461145705005791

    Article  PubMed  CAS  Google Scholar 

  33. Prasad HC, Zhu CB, McCauley JL, Samuvel DJ, Ramamoorthy S, Shelton RC, Hewlett WA, Sutcliffe JS, Blakely RD (2005) Human serotonin transporter variants display altered sensitivity to protein kinase G and p38 mitogen-activated protein kinase. Proc Natl Acad Sci U S A 102:11545–11550. doi:10.1073/pnas.0501432102

    Article  PubMed  CAS  Google Scholar 

  34. Sutcliffe JS, Delahanty RJ, Prasad HC, McCauley JL, Han Q, Jiang L, Li C, Folstein SE, Blakely RD (2005) Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. Am J Hum Genet 77:265–279. doi:10.1086/432648

    Article  PubMed  CAS  Google Scholar 

  35. McCauley JL, Olson LM, Dowd M, Amin T, Steele A, Blakely RD, Folstein SE, Haines JL, Sutcliffe JS (2004) Linkage and association analysis at the serotonin transporter (SLC6A4) locus in a rigid-compulsive subset of autism. Am J Med Genet B Neuropsychiatr Genet 127:104–112. doi:10.1002/ajmg.b.20151

    Article  Google Scholar 

  36. Ramoz N, Reichert JG, Corwin TE, Smith CJ, Silverman JM, Hollander E, Buxbaum JD (2006) Lack of evidence for association of the serotonin transporter gene SLC6A4 with autism. Biol Psychiatry 60:186–191. doi:10.1016/j.biopsych.2006.01.009

    Article  PubMed  CAS  Google Scholar 

  37. Oliveira SA, Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Lyons KE, Pahwa R, Stern MB, Hiner BC, Jankovic J, Ondo WG, Allen FH Jr, Scott BL, Goetz CG, Small GW, Mastaglia FL, Stajich JM, Zhang F, Booze MW, Reaves JA, Middleton LT, Haines JL, Pericak-Vance MA, Vance JM, Martin ER (2003) Association study of Parkin gene polymorphisms with idiopathic Parkinson disease. Arch Neurol 60:975–980. doi:10.1001/archneur.60.7.975

    Article  PubMed  Google Scholar 

  38. O’Connell JR, Weeks DE (1998) PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266. doi:10.1086/301904

    Article  PubMed  Google Scholar 

  39. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. doi:10.1093/bioinformatics/bth457

    Article  PubMed  CAS  Google Scholar 

  40. Ott J (1999) Analysis of human genetic linkage, 3rd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  41. Hodge SE (1994) What association analysis can and cannot tell us about the genetics of complex disease. Am J Med Genet 54:318–323. doi:10.1002/ajmg.1320540408

    Article  PubMed  CAS  Google Scholar 

  42. Martin ER, Bass MP, Gilbert JR, Pericak-Vance MA, Hauser ER (2003) Genotype-based association test for general pedigrees: the genotype-PDT. Genet Epidemiol 25:203–213. doi:10.1002/gepi.10258

    Article  PubMed  CAS  Google Scholar 

  43. Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769. doi:10.1086/383251

    Article  PubMed  CAS  Google Scholar 

  44. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147. doi:10.1086/321276

    Article  PubMed  CAS  Google Scholar 

  45. Ma DQ, Whitehead PL, Menold MM, Martin ER, shley-Koch AE, Mei H, Ritchie MD, DeLong GR, Abramson RK, Wright HH, Cuccaro ML, Hussman JP, Gilbert JR, Pericak-Vance MA (2005) Identification of significant association and gene–gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 77:377–388. doi:10.1086/433195

    Article  PubMed  CAS  Google Scholar 

  46. Ritchie MD, Edwards TL, Fanelli TJ, Motsinger AA (2007) Genetic heterogeneity is not as threatening as you might think. Genet Epidemiol 31:797–800. doi:10.1002/gepi.20256

    Article  PubMed  Google Scholar 

  47. Reeves DC, Lummis SC (2002) The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel. Mol Membr Biol 19:11–26 reviewdoi:10.1080/09687680110110048

    Article  PubMed  CAS  Google Scholar 

  48. Jackson MB, Yakel JL (1995) The 5-HT3 receptor channel. Annu Rev Physiol 57:447–468. doi:10.1146/annurev.ph.57.030195.002311

    Article  PubMed  CAS  Google Scholar 

  49. Krzywkowski K (2006) Do polymorphisms in the human 5-HT3 genes contribute to pathological phenotypes? Biochem Soc Trans 34:872–876. doi:10.1042/BST0340872

    Article  PubMed  CAS  Google Scholar 

  50. Bruss M, Eucker T, Gothert M, Bonisch H (2000) Exon–intron organization of the human 5-HT3A receptor gene. Neuropharmacology 39:308–315. doi:10.1016/S0028-3908(99)00116-1

    Article  PubMed  CAS  Google Scholar 

  51. Niesler B, Frank B, Kapeller J, Rappold GA (2003) Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene 310:101–111. doi:10.1016/S0378-1119(03)00503-1

    Article  PubMed  CAS  Google Scholar 

  52. Morales M, Wang SD (2002) Differential composition of 5-hydroxytryptamine3 receptors synthesized in the rat CNS and peripheral nervous system. J Neurosci 22:6732–6741

    PubMed  CAS  Google Scholar 

  53. Alessandro S, Kato M (2008) The serotonin transporter gene and effectiveness of SSRIs. Expert Rev Neurother 8:111–120. doi:10.1586/14737175.8.1.111

    Article  PubMed  CAS  Google Scholar 

  54. Merens W, Willem Van der Does AJ, Spinhoven P (2007) The effects of serotonin manipulations on emotional information processing and mood. J Affect Disord 103:43–62. doi:10.1016/j.jad.2007.01.032

    Article  PubMed  CAS  Google Scholar 

  55. Sanger DJ, Soubrane C, Scatton B (2007) New perspectives for the treatment of disorders of sleep and arousal. Ann Pharm Fr 65:268–274. doi:10.1016/S0003-4509(07)90046-2

    PubMed  CAS  Google Scholar 

  56. Steffen KJ, Roerig JL, Mitchell JE, Uppala S (2006) Emerging drugs for eating disorder treatment. Expert Opin Emerg Drugs 11:315–336. doi:10.1517/14728214.11.2.315

    Article  PubMed  CAS  Google Scholar 

  57. Niesler B, Weiss B, Fischer C, Nothen MM, Propping P, Bondy B, Rietschel M, Maier W, Albus M, Franzek E, Rappold GA (2001) Serotonin receptor gene HTR3A variants in schizophrenic and bipolar affective patients. Pharmacogenetics 11:21–27. doi:10.1097/00008571-200102000-00003

    Article  PubMed  CAS  Google Scholar 

  58. Niesler B, Kapeller J, Hammer C, Rappold G (2008) Serotonin type 3 receptor genes: HTR3A, B, C, D, E. Pharmacogenomics 9:501–504. doi:10.2217/14622416.9.5.501

    Article  PubMed  CAS  Google Scholar 

  59. Melke J, Westberg L, Nilsson S, Landen M, Soderstrom H, Baghaei F, Rosmond R, Holm G, Bjorntorp P, Nilsson LG, Adolfsson R, Eriksson E (2003) A polymorphism in the serotonin receptor 3A (HTR3A) gene and its association with harm avoidance in women. Arch Gen Psychiatry 60:1017–1023. doi:10.1001/archpsyc.60.10.1017

    Article  PubMed  CAS  Google Scholar 

  60. Ji X, Takahashi N, Saito S, Ishihara R, Maeno N, Inada T, Ozaki N (2008) Relationship between three serotonin receptor subtypes (HTR3A, HTR2A and HTR4) and treatment-resistant schizophrenia in the Japanese population. Neurosci Lett 435:95–98. doi:10.1016/j.neulet.2008.01.083

    Article  PubMed  CAS  Google Scholar 

  61. Yamada K, Hattori E, Iwayama Y, Ohnishi T, Ohba H, Toyota T, Takao H, Minabe Y, Nakatani N, Higuchi T, tera-Wadleigh SD, Yoshikawa T (2006) Distinguishable haplotype blocks in the HTR3A and HTR3B region in the Japanese reveal evidence of association of HTR3B with female major depression. Biol Psychiatry 60:192–201. doi:10.1016/j.biopsych.2005.11.008

    Article  PubMed  CAS  Google Scholar 

  62. Krzywkowski K, Jensen AA, Connolly CN, Brauner-Osborne H (2007) Naturally occurring variations in the human 5-HT3A gene profoundly impact 5-HT3 receptor function and expression. Pharmacogenet Genomics 17:255–266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank both the patients with autism and their family members who agreed to participate in this study, as well as the personnel of the Center for Human Genetics Research at Vanderbilt University and the Miami Institute for Human Genomics at the University of Miami. We would like to thank M.J. Allen for her excellent technical support. This research was supported in part by National Institutes of Health (NIH) program project grant NS026630 (MPV, JLH) and NIH R01 grant MH080647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Haines.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 285 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, B.M., Schnetz-Boutaud, N.C., Bartlett, J. et al. Examination of association of genes in the serotonin system to autism. Neurogenetics 10, 209–216 (2009). https://doi.org/10.1007/s10048-009-0171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-009-0171-7

Keywords

Navigation