Skip to main content

Advertisement

Log in

Laser light combined with a photosensitizer may eliminate methicillin-resistant strains of Staphylococcus aureus

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital acquired infection throughout the world especially in wound and burn infections, pneumonia, septicaemia and endocarditis. We describe the effect of a HeNe laser in combination with a TBO dye on the viability of MRSA. A total of 34 isolates of S. aureus were obtained from 100 patients suffering from burns or wounds and from the nasal vestibulum of medical and nonmedical staff as carriers; eight isolates were methicillin-resistant. The isolates were exposed for 5, 10 and 15 min to a HeNe laser at a wavelength of 632.8 nm and 7.5 mW output power in the presence of 50 μg/ml toluidune blue O photosensitizer. The viable count was substantially decreased as determined by the plate count method for the three exposure times, with 100% killing with the 15-min exposure time. No significant effect was observed on MRSA isolates exposed to the laser alone. So MRSA was completely eradicated following 15 min exposure to a 632.8-nm HeNe laser in the presence of 50 μg/ml toluidune blue O photosensitizer under in vitro conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Takahashi S, Tanaka T, Ashiki A (1990) Clinical studies of methicillin resistant S. aureus (MRSA) infections during the recent 10 months in our department. Nippon Hinyokika Gakkai Zasshi 81(10):1480–1486

    CAS  PubMed  Google Scholar 

  2. Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, Missiakas DM (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 101(33):12312–12317

    Article  CAS  PubMed  Google Scholar 

  3. Bass SE, Joshi SS, Nuttall D, Sazinsky SL, Scharschmidt T, Spencer RB (2001) Staphylococcus. Course Biotechnology and Its Social Impact (MOL 427), Princeton University

  4. Collignon PJ (2002) 11. Antibiotic resistance. Med J Aust 177:325–329

    PubMed  Google Scholar 

  5. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M; SENTRY participants group (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis 32:S114–S132

    Article  CAS  PubMed  Google Scholar 

  6. Thornsberry C (1988) The development of antimicrobial resistance in staphylococci. J Antimicrob Chemother 21(Suppl C):9–17

    CAS  PubMed  Google Scholar 

  7. Wielders CL, Fluit AC, Brisse S, Verhoef J, Schmitz FJ (2002) mecA gene is widely disseminated in Staphylococcus aureus population. J Clin Microbiol 40(11):3970–3975

    Article  CAS  PubMed  Google Scholar 

  8. Grisold AJ, Leitner E, Muhlbauer G, Marth E, Kessler HH (2002) Detection of methicillin-resistant Staphylococcus aureus and simultaneous confirmation by automated nucleic acid extraction and real-time PCR. J Clin Microbiol 40:2392–2397

    Article  CAS  PubMed  Google Scholar 

  9. Falcao MH, Texeira LA, Ferreira-Carvalho BT, Borges-Neto AA, Figueiredo AM (1999) Occurrence of methicillin-resistant and -susceptible Staphylococcus aureus within a single colony contributing to MRSA mis-identification. J Med Microbiol 48:515–521

    Article  CAS  PubMed  Google Scholar 

  10. Rosato AE, Kreiswirth BN, Craig WA, Eisner W, Climo MW, Archer GL (2003) mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 47:1460–1463

    Article  CAS  PubMed  Google Scholar 

  11. Bren L (2002) The battle of the bugs: fighting antibiotic resistance. FDA Consum 36(4):28–34

    PubMed  Google Scholar 

  12. Musser JM, Kapur V (1992) Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: association of the mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination. J Clin Microbiol 30:2058–2063

    CAS  PubMed  Google Scholar 

  13. Blumberg HM, Rimland D, Carroll DJ, Terry P, Wachsmuth IK (1991) Rapid development of ciprofloxacin resistance in methicillin-susceptible and -resistant Staphylococcus aureus. J Infect Dis 163:1279–1285

    CAS  PubMed  Google Scholar 

  14. Hu ZQ, Zhao WH, Asano N, Yoda Y, Hara Y, Shimamura T (2002) Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 46:558–560

    Article  CAS  PubMed  Google Scholar 

  15. Shanson DC, Kensit JC, Duke R (1976) Outbreak of hospital infection with a strain of Staphylococcus aureus resistant to gentamicin and methicillin. Lancet 2:1347–1348

    Article  CAS  PubMed  Google Scholar 

  16. Cookson BD, Phillips I (1988) Epidemic methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 21(Suppl C):57–65

    PubMed  Google Scholar 

  17. Cafferkey MT, Hone R, Coleman D, Pomeroy H, McGrath B, Ruddy R, Keane CT (1985) Methicillin-resistant Staphylococcus aureus in Dublin 1971–84. Lancet 2:705–708

    Article  CAS  PubMed  Google Scholar 

  18. Schaefler S, Jones D, Perry W, Ruvinskaya L, Baradet T, Mayr E, Wilson ME (1981) Emergence of gentamicin- and methicillin-resistant Staphylococcus aureus strains in New York City hospitals. J Clin Microbiol 13:754–759

    CAS  PubMed  Google Scholar 

  19. Pavillard R, Harvey K, Douglas D (1982) Epidemic of hospital-acquired infection due to methicillin-resistant Staphylococcus aureus in major Victorian hospitals. Med J Aust 1:451–454

    CAS  PubMed  Google Scholar 

  20. Okuma K, Iwakawa K, Turnidge JD, Grubb WB, Bell JM, O'Brien FG, Coombs GW, Pearman JW, Tenover FC, Kapi M, Tiensasitorn C, Ito T, Hiramatsu K (2002) Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 40:4289–4294

    Article  CAS  PubMed  Google Scholar 

  21. Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo G, Hefferman H, Liassine N, Bes B, Greenl T, Reverdy ME, Etienne J (2003) Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9(9):978–984

    PubMed  Google Scholar 

  22. Maisch T (2007) Anti-microbial photodynamic therapy: useful in future? Lasers Med Sci 22:83–91

    Article  PubMed  Google Scholar 

  23. Wilson M, Yianni C (1995) Killing of methicillin-resistant Staphylococcus aureus by low power laser light. J Med Microbiol 42:62–66

    Article  CAS  PubMed  Google Scholar 

  24. Griffiths MA, Wren BW, Wilson M (1997) Killing of methicillin-resistant Staphylococcus aureus in vitro using aluminium disulphonated phthalocyanine, a light-activated antimicrobial agent. J Antimicrob Chemother 40:873–876

    Article  CAS  PubMed  Google Scholar 

  25. Segalla A, Borsarelli CD, Braslavsky SE, Spikes JD, Roncucci G, Dei D, Chiti G, Jori G, Reddi E (2002) Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine. Photochem Photobiol Sci 1:641–648

    Article  CAS  PubMed  Google Scholar 

  26. Kloos WE, Bannerman TL (1995) Staphylococcus and micrococcus. In: Murray PR, Baron JE, Pfaller AM, Tenover CF, Yolken RH (eds) Manual of clinical microbiology, 6th edn. American Society for Microbiology, Washington, DC, pp 282–259

    Google Scholar 

  27. National Committee for Clinical Laboratory Standards (2002) Performance standards for antimicrobial susceptibility testing. Approved standard M100-S12. Twelfth informational supplement. NCCLS, Wayne, PA

  28. National Committee for Clinical Laboratory Standards (1993) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A2, 2nd edn. Villanova, PA

  29. SAS Institute (2004) Statistical analysis system user's guide, 7th edn. SAS Institute, Cary, NC

    Google Scholar 

  30. Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28

    Article  CAS  PubMed  Google Scholar 

  31. Wilson M, Pratten J (1995) Lethal photosensitization of Staphylococcus aureus in vitro: effect of growth phase, serum, and pre-irradiation time. Lasers Surg Med 16:272–276

    Article  CAS  PubMed  Google Scholar 

  32. Wilson M, Burns T, Pratten J, Pearson GJ (1995) Bacteria in supragingival plaque samples can be killed by low-power laser light in the presence of a photosensitizer. J Appl Bacteriol 78:569–574

    CAS  PubMed  Google Scholar 

  33. Tang HM, Hamblin MR, Yow CM (2007) A comparative in vitro photoinactivation study of clinical isolates of multidrug-resistant pathogens. J Infect Chemother 13(2):87–91

    Article  PubMed  Google Scholar 

  34. Packer S, Bhatti M, Burns T, Wilson M (2000) Inactivation of proteolytic enzymes from Porphyromonas gingivalis using light-activated agents. Lasers Med Sci 15:24–30

    Article  Google Scholar 

  35. Sharma M, Visai L, Bragheri F, Cristiani I, Gupta PK, Speziale P (2008) Toluidine blue-mediated photodynamic effects on staphylococcal biofilms. Antimicrob Agents Chemother 52(1):299–305

    Article  CAS  PubMed  Google Scholar 

  36. Lin J, Bi LJ, Zhang ZG, Fu YM, Dong TT (2010) Toluidine blue-mediated photodynamic therapy of oral wound infections in rats. Lasers Med Sci 25(2):233–238

    Article  CAS  PubMed  Google Scholar 

  37. Embleton ML, Nair SP, Cookson BD, Wilson M (2002) Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an IgG-tin (IV) chlorin e6 conjugate. J Antimicrob Chemother 50:857–864

    Article  CAS  PubMed  Google Scholar 

  38. Wakayama Y, Takagi M, Yano K (1980) Photosensitized inactivation of E. coli cells in toluidine blue-light system. Photochem Photobiol 32:601–605

    Article  CAS  PubMed  Google Scholar 

  39. Girotti AW (1990) Photodynamic lipid peroxidation in biological systems. Photochem Photobiol 51:497–509

    Article  CAS  PubMed  Google Scholar 

  40. Miranda MA (2001) Photosensitization by drugs. Pure Appl Chem 73:481–486

    Article  CAS  Google Scholar 

  41. Komerik N, Nakanishi H, MacRobert AJ, Henderson B, Speight P, Wilson M (2003) In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother 47:932–940

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Z. Rassam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajim, K.I., Salih, D.S. & Rassam, Y.Z. Laser light combined with a photosensitizer may eliminate methicillin-resistant strains of Staphylococcus aureus . Lasers Med Sci 25, 743–748 (2010). https://doi.org/10.1007/s10103-010-0803-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-010-0803-z

Keywords

Navigation