Skip to main content
Log in

Phylogenetic Diversity and Distribution of Dissimilatory Sulfite Reductase Genes from Deep-Sea Sediment Cores

  • Short Communication
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The diversity and distribution of sulfate-reducing prokaryotes (SRP) was investigated in the Nankai Trough sediments of off-central Japan by exploring the diversity of a functional gene, dissimilatory sulfite reductase (dsrAB). Bulk DNAs were extracted from five piston-cored samples (up to 4.5 m long) with 41 vertical sections, and full-length dsrABgene sequences (ca. 1.9 kb) were PCR amplified and cloned. A total of 382 dsrAB clones yielded eight phylogenetic groups with an indigenous group forming a unique dsrAB lineage. The deltaproteobacterial dsrAB genes were found in almost all sediment samples, especially in the surface layer. One unique dsrAB clone group was also widespread in the dsrAB profiles of the studied sediments, and the percentage of its clones was generally shown gradual increase with sediment depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

References

  • Abulencia CB, Wyborski DL, Garcia JA, Podar M, Chen W, Chang SH, Chang HW, Watson D, Brodie EL, Hazen TC, Keller M (2006) Environmental whole-genome amplification to access microbial population in contaminated sediments. Appl Environ Microbiol 72, 3291–3301

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402

    Article  Google Scholar 

  • Amann R, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169

    Google Scholar 

  • Arakawa S, Sato T, Yoshida Y, Usami R, Kato C (2006) Comparison of the microbial diversity in cold-seep sediments from different depth in the Nankai Trough. J Gen Appl Microbiol 52, 47–54

    Article  Google Scholar 

  • Bahr M, Crump BC, Klepac-Ceraj V, Teske A, Sogin ML, Hobbie JE (2005) Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ Microbiol 7, 1175–1185

    Article  Google Scholar 

  • Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69, 2463–2483

    Article  Google Scholar 

  • Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99, 5261–5266

    Article  Google Scholar 

  • Devereux R, Mundfrom GW (1994) A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl Environ Microbiol 60, 3437–3439

    Google Scholar 

  • Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69, 2765–2772

    Article  Google Scholar 

  • D’Hondt S, Rutherfod S, Spivack AL (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295, 2067–2070

    Article  Google Scholar 

  • D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs KU, Holm NG, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guèrin G, House C, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216–2221

    Article  Google Scholar 

  • Erwin DP, Erickson IK, Delwiche ME, Colwell FS, Strap JL, Crawford RL (2005) Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in eastern Snake River plain aquifer. Appl Environ Microbiol 71, 2016–2025

    Article  Google Scholar 

  • Felsenstein J (1995) PHYLIP: phylogeny inference package, version 3.57c. Department of Genetics, University of Washington, Seattle

  • Fitch WM (1971) Towards defining the course of evolution: Minimum change for a specific tree topology. System Zool 20, 406–416

    Article  Google Scholar 

  • Fukuba T, Ogawa M, Fujii T, Naganuma T (2003) Phylogenetic diversity of dissimilatory sulfite reductase genes from deep-sea cold seep sediment. Mar Biotechnol 5, 458–468

    Article  Google Scholar 

  • Gonzalez JM, Portillo MC, Saiz-Jimenez C (2005) Multiple displacement amplification as pre-polymerase chain reaction (pre-PCR) to process difficult to amplify samples and low copy number sequences from natural environments. Environ Microbiol 7, 1024–1028

    Article  Google Scholar 

  • Hatchikian EC, Zeikus JG (1983) Characterization of a new type of dissimilatory sulfite reductase present in Thermodesulfobacterium commune. J Bacteriol 153, 1211–1220

    Google Scholar 

  • Hosono S, Faruqi AF, Dean FB, Du Y, Sun Z, Wu X, Du J, Kingsmore SF, Egholm M, Lasken RS (2003) Unbiased whole-genome amplification directly from clinical samples. Genome Res 13, 954–964

    Article  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu YL, Hugenholtz P, Kimura N, Wagner M, Ohashi A, Harada H (2006) Non-Sulfate-Reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol 72, 2080–2091

    Article  Google Scholar 

  • Jørgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22, 814–832

    Article  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea-bed—the role of sulphate reduction. Nature 296, 643–645

    Article  Google Scholar 

  • Klein M, Friedrich MW, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183, 6028–6035

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163

    Article  Google Scholar 

  • Leloup J, Quillet L, Berthe T, Petit F (2006) Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol 55, 230–238

    Article  Google Scholar 

  • Li L, Guenzennec J, Nichols P, Henry P, Yanagibayashi M, Kato C (1999) Microbial diversity in Nankai Trough sediments at depth of 3,843 m. J Oceanograph 55, 635–642

    Article  Google Scholar 

  • Llobet-Brossa E, Rosselló-Mora R, Amann R (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64, 2691–2696

    Google Scholar 

  • Lovley DR, Widman PK, Woodward JC, Phillips EJ (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59, 3572–3576

    Google Scholar 

  • Loy A, Kusel K, Lehner A, Drake HL, Wagner M (2004) Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl Environ Microbiol 70, 6998–7009

    Article  Google Scholar 

  • Luthra R, Medeiros LJ (2004) Isothermal multiple displacement amplification. A highly reliable approach for generation unlimited high molecular weight genomic DNA from clinical speciments. J Mol Diagn 6, 236–242

    Google Scholar 

  • Mauclaire L, Zepp K, Meister P, Mckenzie J (2004) Direct in situ detection of cells in deep-sea sediment cores from the Peru Margin (ODP Leg 201, Site 1229). Geobiology 2, 217–223

    Article  Google Scholar 

  • Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65, 4715–4724

    Google Scholar 

  • Molitor M, Dahl C, Molitor I, Schafer U, Speich N, Huber R, Deutzmann R, Truper HG (1998) A dissimilatory sirohaem-sulfite-reductase-type protein from the hyperthermophilic archaeon Pyrobaculum islandicum. Microbiology 144, 529–541

    Article  Google Scholar 

  • Mori K, Kim H, Kakegawa T, Hanada S (2003) A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7, 283–290

    Article  Google Scholar 

  • Mußmann M, Ishii K, Rabus R, Amann R (2005) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mudflat of the Wadden Sea. Environ Microbiol 7, 405–418

    Article  Google Scholar 

  • Mussmann M, Richter M, Lombardot T, Meyerdierks A, Kuever J, Kube M, Glöckner FO, Amann R (2005) Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol 187, 7126–7137

    Article  Google Scholar 

  • Nakagawa T, Nakagawa S, Inagaki F, Takai K, Horikoshi K (2004) Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiol Lett 232, 145–152

    Article  Google Scholar 

  • Pérez-Jiménez JR, Kerkhof LJ (2005) Phylogeography of sulfate-Reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB). Appl Environ Microbiol 71, 1004–1011

    Article  Google Scholar 

  • Purdy KJ, Nedwell DB, Embley TM (2003) Analysis of the sulfate-reducing bacteria and methanogenic archaeal populations in contrasting Antarctic sediments. Appl Environ Microbiol 69, 3181–3191

    Article  Google Scholar 

  • Ravenschlag K, Sahm K, Knoblauch C, Jørgensen BB, Amann R (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Appl Environ Microbiol 66, 3592–3602

    Article  Google Scholar 

  • Rousset M, Casalot L, Rapp-Giles BJ, Dermoun Z, de Philip P, Belaich JP, Wall JD (1998) New shuttle vectors for the introduction of cloned DNA in Desulfovibrio. Plasmid 39, 114–122

    Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9, 945–967

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4, 406–425

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463–5467

    Article  Google Scholar 

  • Schippers A, Neretin LN (2006) Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ Microbiol 8, 1251–1260

    Article  Google Scholar 

  • Stahl DA, Fishbain S, Klein M, Baker BJ, Wagner M (2002) Origins and diversification of sulfate-respiring microorganisms. Antonie van Leeuwenhoek 81, 189–195

    Article  Google Scholar 

  • Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K. (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes. Biosci Biotechnol Biochem 65, 1474–1481

    Google Scholar 

  • Suzuki MT, Rappé MS, Haimberger ZW, Winfield H, Adair N, Ströbl J, Giovannoni SJ (1997) Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Microbiol 63, 983–989

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucreic Acid Res 22, 4673–4680

    Article  Google Scholar 

  • Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67, 1646–1656

    Article  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180, 2975–2982

    Google Scholar 

  • Wall JD, Rapp-Giles BJ, Rousset M (1993) Characterization of small plasmid from Desulfovibrio desulfuricans and its use for shuttle vector construction. J. Bacteriol 175, 4121–4128

    Google Scholar 

  • Widdel F, Bak F (1992) “Gram-negative mesophilic sulfate-reducing bacteria”. In: The Prokaryotes, 2nd ed., Vol. IV, Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH, eds. (New York, Springer-Verlag), pp 3352–3378

    Google Scholar 

  • Zverlov V, Klein M, Lucker S, Friedrich MW, Kellermann J (2005) Lateral gene transfer of dissimilatory (Bi)sulfite reductase revisited. J Bacteriol 187, 2203–2208

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the crew of RTV Bosei Maru, Tokai University, for sample collection. This work was supported by the Research Consortium for Methane Hydrate Resources (MH21) in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Naganuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneko, R., Hayashi, T., Tanahashi, M. et al. Phylogenetic Diversity and Distribution of Dissimilatory Sulfite Reductase Genes from Deep-Sea Sediment Cores. Mar Biotechnol 9, 429–436 (2007). https://doi.org/10.1007/s10126-007-9003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9003-7

Keywords

Navigation