Skip to main content
Log in

Linking the Genomes of Nonmodel Teleosts Through Comparative Genomics

  • Short Communication
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Recently the genomes of two more teleost species have been released: the medaka (Oryzias latipes), and the three-spined stickleback (Gasterosteus aculateus). The rapid developments in genomics of fish species paved the way to new and valuable research in comparative genetics and genomics. With the accumulation of information in model species, the genetic and genomic characterization of nonmodel, but economically important species, is now feasible. Furthermore, comparison of low coverage gene maps of aquacultured fish species against fully sequenced fish species will enhance the efficiency of candidate genes identification projected for quantitative trait loci (QTL) scans for traits of commercial interest. This study shows the syntenic relationship between the genomes of six different teleost species, including three fully sequenced model species: Tetraodon nigroviridis, Oryzias latipes, Gasterosteus aculateus, and three marine species of commercial and evolutionary interest: Sparus aurata, Dicentrarchus labrax, Oreochromis spp. All three commercial fish species belong to the order Perciformes, which is the richest in number of species (approximately 10,000) but poor in terms of available genomic information and tools. Syntenic relationships were established by using 800 EST and microsatellites sequences successfully mapped on the RH map of seabream. Comparison to the stickleback genome produced most positive BLAT hits (58%) followed by medaka (32%) and Tetraodon (30%). Thus, stickleback was used as the major stepping stone to compare seabass and tilapia to seabream. In addition to the significance for the aquaculture industry, this approach can encompass important ecological and evolutionary implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Akazaki M (1962) Studies on the perciform fishes — anatomy, phylogeny, ecology, and taxonomy. 8 Kosugi Co. Ltd., Osaka

  • Bell MA (2001) Lateral plate evolution in the three-spined stickleback: getting nowhere fast. Genetica 112–113:445–461

    Google Scholar 

  • Beveridge MCM, McAndrew BJ (2000) Tilapias: Biology and Exploitation. Springer, p 532

  • Braasch I, Schartl M, Volff JN (2007) Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol Biol 7:74

    Article  PubMed  CAS  Google Scholar 

  • Chatziplis D, Batargias C, Tsigenopoulos CS, Magoulas A, Kollias S, Kotoulas G, Volckaert FAM, Haley ChS (2007). Mapping quantitative trait loci in European sea bass 3 (Dicentrarchus labrax): the BASSMAP pilot study. Aquaculture (in press)

  • Chervitz SA, Aravind L, Sherlock G, Ball CA, Koonin EV, Dwight SS, et al (1998) Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science 282:2022–2028

    Article  PubMed  CAS  Google Scholar 

  • Chistiakov DA, Hellemans B, Haley CS, Law AS, Tsigenopoulos CS, Kotoulas G, Bertotto D, Libertini A, Volckaert FA (2005) A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. Genetics 170:1821–1826

    Article  PubMed  CAS  Google Scholar 

  • Cresko WA, McGuigan KL, Phillips PC, Postlethwait JH (2007) Studies of three-spined stickleback developmental evolution: progress and promise. Genetica 129:105–126

    Article  PubMed  Google Scholar 

  • Erickson DL, Fenster CB, Stenoien HK, Price D (2004) Quantitative trait locus analyses and the study of evolutionary process. Mol Ecol 13:2505–2522

    Article  CAS  Google Scholar 

  • Ferreira IA, Martins C (2007) Physical chromosome mapping of repetitive DNA sequences in Nile tilapia Oreochromis niloticus: evidences for a differential distribution of repetitive elements in the sex chromosomes. Micron (in press). DOI 10.1016/j.micron.2007.02.010

  • Franch R, Louro B, Tsalavouta M, Chatziplis D, Tsigenopoulos CS, Sarropoulou E, Antonello J, Magoulas A, Mylonas CC, Babbucci M, Patarnello T, Power DM, Kotoulas G, Bargelloni L (2006) A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L. Genetics 174:851–861

    Article  PubMed  CAS  Google Scholar 

  • Guyomard R, Mauger S, Tabet-Canale K, Martineau S, Genet C, Krieg F, Quillet E (2006) A type I and type II microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) with presumptive coverage of all chromosome arms. BMC Genomics 7:302

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin IT, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Kidd C, Tomasino E, Davis JT, Wishon C, Stern JE, Carleton KL, Howe AE, Kocher TD (2005) A BAC-based physical map of the Nile tilapia genome. BMC Genomics 6:89

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    Article  PubMed  CAS  Google Scholar 

  • Kocher TD, Lee WJ, Sobolewska H, Penman D, McAndrew B (1998) A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics 148:1225–1232

    PubMed  CAS  Google Scholar 

  • Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lee BY, Lee WJ, Streelman JT, Carleton KL, Howe AE, Hulata G, Slettan A, Stern JE, Terai Y, Kocher TD (2005) A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics 170:237–244

    Article  PubMed  CAS  Google Scholar 

  • Li P, Peatman E, Wang S, Feng J, He C, Baoprasertkul P, Xu P, Kucuktas H, Nandi S, Somridhivej B, Serapion J, Simmons M, Turan C, Liu L, Muir W, Dunham R, Brady Y, Grizzle J, Liu Z (2007) Towards the ictalurid catfish transcriptome: generation and analysis of 31,215 catfish ESTs. BMC Genomics 8:177

    Article  PubMed  CAS  Google Scholar 

  • Meyer A (1993) Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends Ecol Evol 8:279–284

    Article  Google Scholar 

  • Moen T, Fjalestad KT, Munck H, Gomez-Raya L (2004a) A multistage testing strategy for detection of quantitative trait Loci affecting disease resistance in Atlantic salmon. Genetics 167:851–858

    Article  PubMed  CAS  Google Scholar 

  • Moen T, Hoyheim B, Munck H, Gomez-Raya L (2004b) A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes. Anim Genet 35:81–92

    Article  PubMed  CAS  Google Scholar 

  • Moen T, Sonesson AK, Hayes B, Lien S, Munck H, Meuwissen TH (2007) Mapping of a quantitative trait locus for resistance against infectious salmon anaemia in Atlantic salmon (Salmo salar): comparing survival analysis with analysis on affected/resistant data. BMC Genet 8:53

    Article  PubMed  CAS  Google Scholar 

  • Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828

    Google Scholar 

  • Rexroad CE 3rd, Lee Y, Keele JW, Karamycheva S, Brown G, Koop B, Gahr SA, Palti Y, Quackenbush J (2003) Sequence analysis of a rainbow trout cDNA library and creation of a gene index. Cytogenet Genome Res 102:347–354

    Google Scholar 

  • Sarropoulou E, Franch R, Louro B, Power DM, Bargelloni L, Magoulas A, Senger F, Tsalavouta M, Patarnello T, Galibert F, Kotoulas G, Geisler R (2007) A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis. BMC Genomics 8:44

    Article  PubMed  CAS  Google Scholar 

  • Smith JLB, Smith MM (1986) Family No. 183: Sparidae. In: Smith MM, Heemstra PC (eds) Smith’s sea fishes. Macmillian, Johannesburg

    Google Scholar 

  • Senger F, Priat C, Hitte C, Sarropoulou E, Franch R, Geisler R, Bargelloni L, Power DM, Galibert F (2006) The first radiation hybrid map of a perch-like fish: the gilthead seabream (Sparus aurata L.). Genomics 87:793–800

    Article  PubMed  CAS  Google Scholar 

  • Steinke D, Salzburger W, Meyer A (2006) Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs. J Mol Evol 62:772–784

    Article  PubMed  CAS  Google Scholar 

  • Stemshorn KC, Nolte AW, Tautz D (2005) A genetic map of Cottus gobio (Pisces, Teleostei) based on microsatellites can be linked to the physical map of Tetraodon nigroviridis. J Evol Biol 18:1619–1624

    Article  PubMed  CAS  Google Scholar 

  • Volff J-N (ed) (2006) Vertebrate Genomes. Genome Dyn Basel

  • Whitaker HA, McAndrew BJ, Taggart JB (2006) Construction and characterization of a BAC library for the European sea bass Dicentrarchus labrax. Anim Genet 37:526

    Google Scholar 

  • Xu P, Wang S, Liu L, Thorsen J, Kucuktas H, Liu Z (2007) A BAC-based physical map of the channel catfish genome. Genomics 90:380–388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Marine Genomics Europe Network http://www.marine-genomics-europe.org/), and in particular Dr. Richard Reinhardt from the Max-Planck Institute of Berlin for providing cDNA sequences, Professor Hiroshi Mitani for having provided medaka marker sequences, Mr. Spiros Papadopoulos who helped with RH mapping, Mr, Jaque Lagnel for bulk primer design, and Dr. Kostas Tsigenopoulos and Dr. Benny Ron for reviewing a first version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sarropoulou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarropoulou, E., Nousdili, D., Magoulas, A. et al. Linking the Genomes of Nonmodel Teleosts Through Comparative Genomics. Mar Biotechnol 10, 227–233 (2008). https://doi.org/10.1007/s10126-007-9066-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9066-5

Keywords

Navigation