Skip to main content
Log in

Construction and analysis of a BAC library in the grass Brachypodium sylvaticum: its use as a tool to bridge the gap between rice and wheat in elucidating gene content

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

A BAC library of 30,228 clones with an average insert size of 102 kb was constructed in the grass Brachypodium sylvaticum. Brachypodium has a simple genome, similar in size and repetitive DNA content to that of rice, and is more closely related than rice both to the major temperate cereals wheat and barley, and to the forage grasses. The library represents 6.6 genome equivalents, implying a 99.9% probability of recovering any specific sequence. The library was arrayed onto two high-density colony filters, which were screened with heterologous DNA probes from rice chromosome nine and from syntenous regions of wheat, barley, maize and oat. The construction of Brachypodium BAC contigs revealed that synteny between rice, wheat and Brachypodium was largely maintained over several regions of rice chromosome nine. This suggests that Brachypodium will be a useful tool in the elucidation of gene content in agronomically important cereal crops, complementing rice as a “grass genome model”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbo S, Dunford RP, Foote TN, Reader SM, Flavell RB, Moore G (1995) Organization of retro-element and stem-loop repeat families in the genomes and nuclei of cereals. Chromosome Res 3(1):5–15

    CAS  PubMed  Google Scholar 

  • Allouis S, Moore G, Bellec A, Sharp R, Faivre Rampant P, Mortimer K, Pateyron S, Foote TN, Griffiths S, Caboche M, Chalhoub B (2003) Construction and characterisation of a hexaploid wheat (Triticum aestivum L) BAC library from the reference germplasm “Chinese Spring”. Cereal Res Commun 31:331–338

    CAS  Google Scholar 

  • Arabidopsis Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    PubMed  Google Scholar 

  • Aragon-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G (1996) A cereal centromeric sequence. Chromosoma 105(5):261–268

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in Angiosperms. Ann Bot 76:113–176

    Article  CAS  Google Scholar 

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Ann Bot 86:859–909

    CAS  Google Scholar 

  • Bevan M (2003) Surprises inside a green grass genome. Science 300:1514–1515

    Article  CAS  PubMed  Google Scholar 

  • Bonen L, Boer PH, McIntosh JE, Gray MW (1987) Nucleotide sequence of the wheat mitochondrial gene for subunit I of cytochrome oxidase. Nucleic Acids Res 15:6734–6734

    CAS  PubMed  Google Scholar 

  • Budiman MA, Mao L, Wood T, Wing RA (2000) A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res 10:129–136

    CAS  PubMed  Google Scholar 

  • Catalan P, Shi Y, Armstrong L, Draper J, Stace CA (1995) Molecular phylogeny of the grass genus Brachypodium P-Beauv based on RFLP and RAPD analysis. Bot J Linn Soc 117: 263–280

    Article  Google Scholar 

  • Catalan P, Kellogg EA, Olmstead RG (1997) Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. Mol Phylogen Evol 8:150–166

    Article  CAS  Google Scholar 

  • Clarke L, Carbon J (1976) A colony bank containing synthetic ColE hybrid plasmids representative of the entire E. coli genome. Cell 9:91–99

    CAS  PubMed  Google Scholar 

  • Danesh D, Penuela S, Mudge J, Denny RL, Nordstrom H, Martinez JP, Young ND (1998) A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theor Appl Genet 96:196–202

    Article  CAS  Google Scholar 

  • Delseny M, Salses J, Cooke R, Sallaud C, Regad F, Lagoda P, Guiderdoni E, Ventelon M, Brugidou C, Ghesquière A (2001) Rice genomics: present and future. Plant Physiol Biochem 39:323–334

    Article  Google Scholar 

  • Deshpande VG, Ranjekar PK (1980) Repetitive DNA in three Gramineae species with low DNA content. Hoppe-Seylers Z Physiol Chem 361:1223–1233

    Google Scholar 

  • Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon: a new model system for functional genomics in grasses. Plant Physiol 127:1539–1555

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    PubMed  Google Scholar 

  • Flavell R (1980) The molecular characterization and organization of plant chromosomal DNA sequences. Annu Rev Plant Physiol 31:569–596

    Article  CAS  Google Scholar 

  • Foote T, Roberts M, Kurata N, Sasaki T, Moore G (1997) Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics 147:801–807

    CAS  PubMed  Google Scholar 

  • Gale MD, Devos KM (1998) Plant comparative genetics after 10 years. Science 282:656–659

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    CAS  PubMed  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    CAS  PubMed  Google Scholar 

  • Kurata N, Moore G, Nagamura Y, Foote T, Yano M, Minobe Y, Gale M (1994) Conservation of genome structure between rice and wheat. BioTechnology 12:276–278

    CAS  Google Scholar 

  • Lagudah ES, Dubcovsky J, Powell W (2001) Wheat genomics. Plant Physiol Biochem 39:335–344

    CAS  Google Scholar 

  • Luo M, Wang YH, Frisch D, Joobeur T, Wing RA, Dean RA (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44:154–162

    Article  CAS  PubMed  Google Scholar 

  • Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier LW, McPherson JD, Waterston RH (1997) High throughput fingerprint analysis of large-insert clones. Genome Res 7:1072–1084

    CAS  PubMed  Google Scholar 

  • Ming R, Moore PH, Zee F, Abbey CA, Ma H, Paterson AH (2001) Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome Theor Appl Genet. 102:892–899

    Google Scholar 

  • Moore G, Abbo S, Cheung W, Foote T, Gale M, Koebner R, Leitch A, Leitch I, Money T, Stancombe P, et al (1993a) Key features of cereal genome organization as revealed by the use of cytosine methylation-sensitive restriction endonucleases. Genomics 15:472–482

    Article  CAS  PubMed  Google Scholar 

  • Moore G, Gale MD, Kurata N, Flavell RB (1993b) Molecular analysis of small grain cereal genomes: current status and prospects. BioTechnology 11:584–589

    CAS  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution: grasses, line up and form a circle. Curr Biol 5:737–739

    CAS  PubMed  Google Scholar 

  • Mozo T, Fischer S, Shizuya H, Altmann T (1998) Construction and characterization of the IGF Arabidopsis BAC library. Mol Gen Genet 258:562–570

    CAS  PubMed  Google Scholar 

  • Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, et al (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Rep 18:243–253

    CAS  Google Scholar 

  • Robertson I (1981) Chromosome numbers in Brachypodium Beauv. (Gramineae). Genetica 56:55–60

    Google Scholar 

  • Saalaoui E, Litvak S, Araya A (1990) The apocytochrome b from an alloplasmic line of wheat (T. aestivum, cytoplasm-T. timopheevi) exists in two differently expressed forms. Plant Sci 66:237–246

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Sarma RN, Fish L, Gill BS, Snape JW (2000) Physical characterization of the homoeologous Group 5 chromosomes of wheat in terms of rice linkage blocks, and physical mapping of some important genes. Genome 43: 191–198

    Article  CAS  PubMed  Google Scholar 

  • Schulte E, Staubach S, Laser B, Kuck U (1989) Wheat mitochondrial DNA: organization and sequences of the atpA and atp9 genes. Nucleic Acids Res 17:7531–7531

    CAS  PubMed  Google Scholar 

  • Shizuya H, Birren B, Kim U, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    CAS  PubMed  Google Scholar 

  • Song J, Dong F, Lilly J, Stupar RM, Jiang J (2001) Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences. Genome 44:463–469

    Article  CAS  PubMed  Google Scholar 

  • Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B (2000) Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci USA 97:13436–13441

    CAS  PubMed  Google Scholar 

  • Tao Q, Wang A, Zhang H-B (2002) One large-insert plant-transformation-competent BIBAC library and three BAC libraries of Japonica rice for genome research in rice and other grasses. Theor Appl Genet 105:1058–1066

    Article  Google Scholar 

  • Tomkins JP, Davis G, Main D, Yim Y, Duru N, Musket T, Goicoechea JL, Frisch DA, Coe EH Jr, Wing RA (2002) Construction and characterization of a deep-coverage bacterial artificial chromosome library for maize. Crop Sci 42:928–933

    CAS  Google Scholar 

  • Vinatzer BA, Zhang H-B, Sansavini S (1998) Construction and characterization of a bacterial artificial chromosome library of apple. Theor Appl Genet 97:1183–1190

    Article  CAS  Google Scholar 

  • Wang G L, Holsten TE, Song WY, Wang HP, Ronald PC (1995) Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J 7:525–533

    CAS  PubMed  Google Scholar 

  • Woo S-S, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    CAS  PubMed  Google Scholar 

  • Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J, et al (2002) A comprehensive rice transcript map containing 6,591 expressed sequence tag sites. Plant Cell 14:525–535

    CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Takuji Sasaki (RGP, Japan) and Mark Sorrells and Steven Tanksley (Cornell University, USA) for providing some of the probes used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracie N. Foote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foote, T.N., Griffiths, S., Allouis, S. et al. Construction and analysis of a BAC library in the grass Brachypodium sylvaticum: its use as a tool to bridge the gap between rice and wheat in elucidating gene content. Funct Integr Genomics 4, 26–33 (2004). https://doi.org/10.1007/s10142-003-0101-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-003-0101-y

Keywords

Navigation