Skip to main content
Log in

A comparative analysis of transcript abundance using SAGE and Affymetrix arrays

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

A number of methods are currently used for gene expression profiling. They differ in scale, economy and sensitivity. We present the results of a direct comparison between serial analysis of gene expression (SAGE) and the Barley1 Affymetrix GeneChip. Both technology platforms were used to obtain quantitative measurements of transcript abundance using identical RNA samples and assessed for their ability to quantify differential gene expression. For SAGE, a total of 82,122 tags were generated from two independent libraries representing whole developing barley caryopsis and dissected embryos. The Barley1 GeneChip contains 22,791 probe sets. Results obtained from both methods are generally comparable, indicating that both will lead to similar conclusions regarding transcript levels and differential gene expression. However, excluding singletons, 24.4% of the unique SAGE tags had no corresponding probe set on the Barley1 array indicating that a broader snapshot of gene expression was obtained by SAGE. Discrepancies were observed for a number of “genes” and these are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH, Kirkness EF, Weinstock KG, Gocayne JD, White O et al (1995) Initial assessment of human gene diversity and expression patterns based upon 83-million nucleotides of cDNA sequence. Nature 377:3–7

    CAS  PubMed  Google Scholar 

  • Aharoni A, Vorst O (2002) DNA microarrays for functional plant genomics. Plant Mol Biol 48:99–118

    Google Scholar 

  • Chakravarthy S, Tuori RP, D’Ascenzo MD, Fobert PR, Despres C, Martin GB (2003) The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–3050

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Rowley JD, Wang SM (2000) Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Natl Acad Sci USA 97:349–353

    Google Scholar 

  • Chen JJ, Sun M, Lee SG, Zhou GL, Rowley JD, Wang S (2002a) Identifying novel transcripts and novel genes in the human genome by using novel SAGE tags. Proc Natl Acad Sci USA 99:12257–12262

    Google Scholar 

  • Chen JJ, Lee SG, Zhou GL, Wang SM (2002b) High-throughput GLGI procedure for converting a large number of serial analysis of gene expression tag sequences into 3′ complementary DNAs. Genes Chromosomes Cancer 33:252–261

    Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise R (2004) A new resource for cereal genomics: 22 K barley GeneChip comes of age Plant Physiol 134:960–968

    Google Scholar 

  • Coughlan SJ, Agrawal V, Meyers B (2004) A comparison of global gene expression measurement technologies in Arabidopsis thaliana. Comp Func Genomics 5(3):245–252

    Google Scholar 

  • Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21(Suppl):10–14

    Google Scholar 

  • Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL, Dean JFD (2003) SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol 133:1397–1406

    Google Scholar 

  • Evans SJ, Datson NA, Kabbaj M, Thompson RC, Vreugdenhil E, De Kloet ER, Watson SJ, Akil H (2002) Evaluation of Affymetrix Gene Chip sensitivity in rat hippocampal tissue using SAGE analysis. Eur J Neurosci 16:409–413

    Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  PubMed  Google Scholar 

  • Fizames C, Munos S, Cazettes C, Nacry P, Boucherez J, Gaymard F, Piquemal D, Delorme V, Commes TS, Doumas P et al (2004) The Arabidopsis root transcriptome by serial analysis of gene expression. Gene identification using the genome sequence. Plant Physiol 134:67–80

    Google Scholar 

  • Frandsen GI, Mundy J, Tzen JTC (2001) Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant 112:301–307

    Article  Google Scholar 

  • Gibbings JG, Cook BP, Dufault MR, Madden SL, Khuri S, Turnbull CJ, Dunwell JM (2003) Global transcript analysis of rice leaf and seed using SAGE technology. Plant Biotechnol J 1:271–285

    Google Scholar 

  • Gowda M, Jantasuriyarat C, Dean RA, Wang GL (2004) Robust-LongSAGE (RL-SAGE): a substantially improved LongSAGE method for gene discovery and transcriptome analysis. Plant Physiol 134:890–897

    Google Scholar 

  • Hedrick SM, Cohen DI, Nielsen EA, Davis MM (1984) Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308:149–153

    Google Scholar 

  • Hayden PS, El-Meanawy A, Schelling JR, Sedor JR (2003) DNA expression analysis: serial analysis of gene expression, microarrays and kidney disease. Curr Opin Nephrol 12 (4):407–414

    Google Scholar 

  • Huang AHC (1992) Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol 43:177–200

    Google Scholar 

  • Huang XQ, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  Google Scholar 

  • Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, Berg K, Hollingsworth MA, Cameron JL, Yeo CJ, Kern SE et al (2003) Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 63:8614–8622

    Google Scholar 

  • Irie T, Matsumura H, Terauchi R, Saitoh H (2003) Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol Genet Genomics 270:181–189

    Google Scholar 

  • Ishii M, Hashimoto S, Tsutsumi S, Wada Y, Matsushima K, Kodama T, Aburatani H (2000) Direct comparison of GeneChip and SAGE on the quantitative accuracy in transcript profiling analysis. Genomics 68:136–143

    Google Scholar 

  • Jung SH, Lee JY, Lee DH (2003) Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol Biol 52:553–567

    Google Scholar 

  • Kazan K (2003) Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci 8:468–471

    Google Scholar 

  • Kim HL (2003) Comparison of oligonucleotide-microarray and serial analysis of gene expression (SAGE) in transcript profiling analysis of megakaryocytes derived from CD34(+) cells. Exp Mol Med 35:460–466

    Google Scholar 

  • Klemsdal SS, Hughes W, Lonneborg A, Aalen RB, Olsen OA (1991) Primary structure of a novel barley gene differentially expressed in immature aleurone layers. Mol Genet Genomics 228:9–16

    Google Scholar 

  • Lee JY, Lee DH (2003) Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol 132:517–529

    Google Scholar 

  • Lee S, Clark T, Chen JJ, Zhou GL, Scott LR, Rowley JD, Wang SM (2002) Correct identification of genes from serial analysis of gene expression tag sequences. Genomics 79:598–602

    Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger-RNA by means of the polymerase chain-reaction. Science 257:967–971

    CAS  PubMed  Google Scholar 

  • Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21:20–24

    Google Scholar 

  • Lockhart DJ, Dong HL, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang CW, Kobayashi M, Horton H et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    CAS  PubMed  Google Scholar 

  • Lorenz WW, Dean JFD (2002) SAGE profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda). Tree Physiol 22:301–310

    CAS  PubMed  Google Scholar 

  • Margulies EH, Kardia SLR, Innis JW (2001) A comparative molecular analysis of developing mouse forelimbs and hindlimbs using Serial Analysis of Gene Expression (SAGE). Genome Res 11:1686–1698

    Google Scholar 

  • Matsumura H, Nirasawa S, Terauchi R (1999) Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J 20:719–726

    Google Scholar 

  • Matsumura H, Nirasawa S, Kiba A, Urasaki N, Saitoh H, Ito M, Kawai-Yamada M, Uchimiya H, Terauchi R (2003a) Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells. Plant J 33:425–434

    Google Scholar 

  • Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R (2003b) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100:15718–15723

    Google Scholar 

  • Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30:13–19

    Article  Google Scholar 

  • Nacht M, Ferguson AT, Zhang W, Petroziello JM, Cook BP, Gao YH, Maguire S, Riley D, Coppola G, Landes GM et al (1999) Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res 59:5464–5470

    Google Scholar 

  • Neilson L, Andalibi A, Kang D, Coutifaris C, Strauss JF, Stanton JAL, Green DPL (2000) Molecular phenotype of the human oocyte by PCR-SAGE. Genomics 63:13–24

    Google Scholar 

  • Pauws E, van Kampen AHC, van de Graaf SAR, Ris-Stalpers C (2001) Heterogeneity in polyadenylation cleavage sites in mammalian mRNA sequences: implications for SAGE analysis. Nucleic Acids Res 29:1690–1694

    Google Scholar 

  • Redman JC, Haas BJ, Tanimoto G, Town CD (2004) Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. Plant J 38:545–561

    Google Scholar 

  • Rishi AS, Nelson ND, Goyal A (2002) DNA microarrays: gene expression profiling in plants. Rev Plant Biochem Biotechnol 1:81–100

    Google Scholar 

  • Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20:508–512

    Google Scholar 

  • Scheel J, von Brevern MC, Horlein A, Fischer A, Schneider A, Bach A (2002) Yellow pages to the transcriptome. Pharmacogenetics 3:791–807

    Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270:467–470

    CAS  PubMed  Google Scholar 

  • Smith LM, Handley J, Li Y, Martin H, Donovan L, Bowles DJ (1992) Temporal and spatial regulation of a novel gene in barley embryos. Plant Mol Biol 20:255–266

    CAS  PubMed  Google Scholar 

  • Sun M, Zhou GL, Lee S, Chen JJ, Shi RZ, Wang SM (2004) SAGE is far more sensitive than EST for detecting low-abundance transcripts. BMC Genomics 5:1

    Google Scholar 

  • Tan SS, Gunnersen J, Job C (2002) Global gene expression analysis of developing neocortex using SAGE. Int J Dev Biol 46:653–660

    Google Scholar 

  • Thomas SW, Glaring MA, Rasmussen SW, Kinane JT, Oliver RP (2002) Transcript profiling in the barley mildew pathogen Blumeria graminis by serial analysis of gene expression (SAGE). Mol Plant Microb Interact 15:847–856

    Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene-expression. Science 270:484–487

    CAS  PubMed  Google Scholar 

  • Welle S, Bhatt K, Thornton CA (1999) Inventory of high-abundance mRNAs in skeletal muscle of normal men. Genome Res 9:506–513

    Google Scholar 

  • Wu SH, Ramonell K, Gollub J, Somerville S (2001) Plant gene expression profiling with DNA microarrays. Plant Physiol Biochem 39:917–926

    Google Scholar 

  • Ye SQ, Usher DC, Zhang LQ (2002) Gene expression profiling of human diseases by serial analysis of gene expression. J Biomed Sci 9:384–394

    Google Scholar 

  • Zhu T, Wang X (2000) Large-scale profiling of the Arabidopsis transcriptome. Plant Physiol 124:1472–1476

    Google Scholar 

  • Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW (1997) Gene expression profiles in normal and cancer cells. Science 276:1268–1272

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Food Standards Agency in the UK (GO2) and a BBSRC ISIS award and a McKnight Landgrant Professorship to Dr. Gary Muehlbauer. The HarvEST database was kindly provided by Drs. Tim Close and Steve Wanamaker, UCR. We thank Ilze Druka for advice on data analysis and Arnis Druka for useful discussions about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robbie Waugh.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibrahim, A.F.M., Hedley, P.E., Cardle, L. et al. A comparative analysis of transcript abundance using SAGE and Affymetrix arrays. Funct Integr Genomics 5, 163–174 (2005). https://doi.org/10.1007/s10142-005-0135-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-005-0135-4

Keywords

Navigation