Skip to main content
Log in

Plant and animal microRNAs: similarities and differences

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Plant and animal microRNAs (miRNAs) are evolutionarily ancient small RNAs, ∼19–24 nucleotides in length, that are generated by cleavage from larger highly structured precursor molecules. In both plants and animals, miRNAs posttranscriptionally regulate gene expression through interactions with their target mRNAs, and these targets are often genes involved with regulating key developmental events. Despite these similarities, plant and animal miRNAs exert their control in fundamentally different ways. Generally, animal miRNAs repress gene expression by mediating translational attenuation through (multiple) miRNA-binding sites located within the 3′ untranslated region of the target gene. In contrast, almost all plant miRNAs regulate their targets by directing mRNA cleavage at single sites in the coding regions. These and other differences suggest that the two systems may have originated independently, possibly as a prerequisite to the development of complex body plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altuvia S (2004) Regulatory small RNAs: the key to co-ordinating global regulatory circuits. J Bacteriol 186:6679–6680

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:244–350

    Article  Google Scholar 

  • Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818

    Article  CAS  PubMed  Google Scholar 

  • Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5:337–350

    Article  CAS  PubMed  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs—at the root of plant development? Plant Physiol 132:709–717

    Article  CAS  PubMed  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci U S A 101:11511–11516

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511

    Article  CAS  PubMed  Google Scholar 

  • Doench JG, Peterson CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442

    Article  CAS  PubMed  Google Scholar 

  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  PubMed  Google Scholar 

  • Floyd SF, Bowman JL (2004) Ancient microRNA target sequences in plants. Nature 428:485–486

    Article  CAS  PubMed  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLOS Biol 2:e363

    Article  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    Article  CAS  PubMed  Google Scholar 

  • Kuersten S, Goodwin EB (2003) The power of the 3′ UTR-translational control and development. Nat Rev Genet 4:626–637

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum R, Ambros V (1993) The heterochronic gene lin-4 of C. elegans encodes two small RNAs with antisense complementarity to lin41. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003a) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003b) Vertebrate microRNA genes. Science 299:1540

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC (2002a) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002b) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Meyerowitz EM (2002) Plants compared to animals: the broadest comparative study of development. Science 295:1482–1485

    Article  CAS  PubMed  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  CAS  PubMed  Google Scholar 

  • Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    Article  CAS  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  CAS  PubMed  Google Scholar 

  • Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242

    Article  CAS  PubMed  Google Scholar 

  • Park W, Li J, Song R, Messing J, Chen X (2002) CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda M, Maller B, Srinivasan A, Fishman M, Hayward D, Ball E et al (2000) Conservation across animal phylogeny of the sequence and temporal regulation of the 21 nucleotide let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Seggerson K, Tang L, Moss EG (2002) Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol 243:215–225

    Article  CAS  PubMed  Google Scholar 

  • Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J (2004) A large imprinted microRNA gene cluster at the mouse Dlk1–Gtl2 domain. Genome Res 9:1741–1748

    Article  Google Scholar 

  • Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila microRNA targets. PLOS Biol 1:E60

    Article  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2003) RNA silencing bridging the gaps in wheat extracts. Trends Plant Sci 8:307–309

    Article  CAS  PubMed  Google Scholar 

  • Wrightman B, Burglin TR, Gatto J, Arasu P, Ruvkun G (1991) Negative regulatory sequences in the lin-14 3′-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev 5:1813–1824

    PubMed  Google Scholar 

  • Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    Article  CAS  PubMed  Google Scholar 

  • Yekta S, Shih I-H, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 100:9779–9784

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Waterhouse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millar, A.A., Waterhouse, P.M. Plant and animal microRNAs: similarities and differences. Funct Integr Genomics 5, 129–135 (2005). https://doi.org/10.1007/s10142-005-0145-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-005-0145-2

Keywords

Navigation