Skip to main content
Log in

Gene expression associated with compatible viral diseases in grapevine cultivars

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Viral diseases affect grapevine cultures without inducing any resistance response. Thus, these plants develop systemic diseases and are chronically infected. Molecular events associated with viral compatible infections responsible for disease establishment and symptoms development are poorly understood. In this study, we surveyed viral infection in grapevines at a transcriptional level. Gene expression in the Vitis vinifera red wine cultivars Carménère and Cabernet-Sauvignon naturally infected with GLRaV-3 were evaluated using a genome-wide expression profiling with the Vitis vinifera GeneChip® from Affymetrix. We describe numerous genes that are induced or repressed in viral infected grapevines leaves. Changes in gene expression involved a wide spectrum of biological functions, including processes of translation and protein targeting, metabolism, transport, and cell defense. Considering cellular localization, the membrane and endomembrane systems appeared with the highest number of induced genes, while chloroplastic genes were mostly repressed. As most induced genes associated with the membranous system are involved in transport, the possible effect of virus in this process is discussed. Responses of both cultivars are analyzed and the results are compared with published data from other species. This is the first study of global gene profiling in grapevine in response to viral infections using DNA microarray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alzhanova DV, Napuli AJ, Creamer R, Dolja VV (2001) Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog. EMBO J 20:6997–7007

    Article  PubMed  CAS  Google Scholar 

  • Aparicio F, Thomas CL, Lederer C, Niu Y, Wang D, Maule A (2005) Virus induction of heat shock protein 70 reflects a general response to protein accumulation in the plant Cytosol. Plant Physiol 138:529–536

    Article  PubMed  CAS  Google Scholar 

  • Aranda M, Maule A (1998) Virus-induced host gene shutoff in animals and plants. Virology 243:261–267

    Article  PubMed  CAS  Google Scholar 

  • Aziz A, Poinnsot B, Daire X, Adrian M, Bezier A, Lambert B, Joubert JM, Pugin A (2003) Laminarin elicits defense response in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant-Microb Interact 16(12):1118–1128

    CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Borgo M, Angelini E (2002) Influence of grapevine leaf roll (GLRaV3) on Merlot cv. grape production. Bull de l’OIV 859–860:611–623

    Google Scholar 

  • Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscicic acid signaling. Plant Cell 15:2165–2180

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Citovsky V (2003) Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant J 35(3):386–392

    Article  PubMed  CAS  Google Scholar 

  • Chen MH, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19(5):913–920

    Article  PubMed  CAS  Google Scholar 

  • Di Gaspero G, Cipriani G (2002) Resistance gene analogs are candidate markers for disease-resistance genes in grape (Vitis spp.) Theor Appl Genet 106(1):163–172

    PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Ehrenfeld N, Cañón P, Stange C, Medina C, Arce-Johnson P (2005) Tobamovirus coat protein CPCg induces an HR-like response in sensitive tobacco plants. Mol Cells 19:1–9

    Article  Google Scholar 

  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:821–829

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rodriguez S, Pozo MJ, Azcon-Aguilar C, Ferrol N (2005) Expression of a tomato sugar transporter is increased in leaves of mycorrhizal or phytophthora parasitica-infected plants. Mycorrhiza 15:489–496

    Article  PubMed  CAS  Google Scholar 

  • Gautier L, Cope L, Bolstad B, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip® data at the probe level. Bioinformatics 20(3):307–315

    Article  PubMed  CAS  Google Scholar 

  • Golem S, Culver JN (2003) Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant-Microb Interact 16:681–688

    CAS  Google Scholar 

  • Goes da Silva F, Iandolino A, Al-Kayal F, Bohlmann MC, Cushman MA, Lim H, Ergul A, Figueroa R, Kabuloglu EK, Osborne C, Rowe J, Tattersall E, Leslie A, Xu J, Baek J, Cramer GR, Cushman JC, Cook DR (2005) Characterizing the Grape Transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol 19(2):574–597

    Article  Google Scholar 

  • Irizarry RA, Hobbs R, Collin R, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Ishihara T, Sakurai N, Sekine KT, Hase H, Ikegami M, Shibata D, Takahashi H (2004) Comparative analysis of expressed sequenced tags in resistant and susceptible ecotypes of Arabidopsis thaliana infected with cucumber mosaic virus. Plant Cell Physiol 45:470–480

    Article  PubMed  CAS  Google Scholar 

  • Itaya A, Matsuda Y, Gonzales R, Nelson RS, Ding B (2002) Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. Mol Plant-Microb Interact 15:990–999

    CAS  Google Scholar 

  • Kerr MK, Martin M, Churchill GA (2000) Analysis of variance for gene expression microarray data. J Comp Biol 7(6):819–837

    Article  CAS  Google Scholar 

  • Lehto K, Tikkanen M, Hiriart JB, Paakkarinen V, Aro EM (2003) Depletion of the photosystem II core complex in mature tobacco leaves infected by the flavum strain of tobacco mosaic virus. Mol Plant-Microb Interact 16:1135–1144

    CAS  Google Scholar 

  • Ling KS, Zhu HY, Gonsalves D (2004) Complete nucleotide sequence and genome organization of grapevine leafroll-associated virus 3, type member of the genus Ampelovirus. J Gen Virol 85:2099–2102

    Article  PubMed  CAS  Google Scholar 

  • Lubkowitz M (2006) The OPT family functions in long distance peptide and metal transport in plants. Genet Eng (NY) 27:35–55

    Article  Google Scholar 

  • Mahalingam R, Gomez-Buitrago AM, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4(3):R20

    Article  PubMed  Google Scholar 

  • Martelli GP (1993) Graft-transmissible diseases of grapevines. In: Handbook for detection and diagnosis. FAO, Rome

  • Martelli GP, Agranovsky AA, Bar-Joseph M, Boscia D, Candresse T, Coutts RHA, Dolja VV, Falk BW, Gonsalves D, Jelkmann W, Karasev AV, Minafra A, Namba S, Vetten HJ, Wisler GC, Yoshikawa N (2002) The family Closteroviridae revised. Arch Virol 147(10):2039–2044

    Article  PubMed  CAS  Google Scholar 

  • Maule A, Leh V, Ledrer C (2002) The dialog between viruses and host in compatible interactions. Curr Opin Plant Biol 5:279–284

    Article  PubMed  CAS  Google Scholar 

  • Mayda E, Marques C, Conejero V, Vera P (2000) Expression of a pathogen-induced gene can be mimicked by auxin insensitivity. Mol Plant-Microb Interact 13(1):23–31

    CAS  Google Scholar 

  • Minafra A, Hadidi A (1994) Sensitive detection of grapevine virus A, B or leaf roll associated III from viruliferous mealybugs and infected tissue by cDNA amplification. J Virol Methods 47:175–187

    Article  PubMed  CAS  Google Scholar 

  • Mueller L, Goodman C, Silady R, Walbot V (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Schmelz EA, Moussatche P, Lund ST, Jonnes JB, Klee HJ (2003) Susceptible to intolerance—a range of hormonal actions in a susceptible Arabidopsis pathogen response. Plant J 33(2):245–257

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard L, Petersen M, Mattsson O, Mundy J (2002) An Arabidopsis callose synthase. Plant Mol Biol 49:559–566

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN (2005) Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol 79(4):2549–2558

    Article  PubMed  CAS  Google Scholar 

  • Park CJ, Shin R, Park JM, Lee GJ, You JS, Paek KH (2002) Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Mol Biol 48(3):243–254

    Article  PubMed  CAS  Google Scholar 

  • Pennazio S, Roggero P (1996) Plant hormones and plant virus diseases. The auxins. New Microbiol 19(4):369–378

    PubMed  CAS  Google Scholar 

  • Pontier D, Gan S, Amasino RM, Roby D, Lam E (1999) Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Mol Biol 39(6):1243–1255

    Article  PubMed  CAS  Google Scholar 

  • Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282

    Article  PubMed  CAS  Google Scholar 

  • Simoes I, Faro C (2004) Structure and function of plant aspartic proteinases. Eur J Biochem 271(11):2067–2075

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A 100(25):14672–14677

    Article  PubMed  CAS  Google Scholar 

  • Smith CM, Rodríguez-Buey M, Karlsson J, Campbell M (2004)The response of the poplar transcriptome to wounding and subsequent infection by a viral pathogen. New Phytol 164:123–136

    Article  CAS  Google Scholar 

  • Sohal AK, Pallas JA, Jenkins GI (1999) The promoter of a Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis. Plant Mol Biol 41(1):75–87

    Article  PubMed  CAS  Google Scholar 

  • Tomita Y, Mizuno T, Diez J, Naito S, Ahlquist P, Ishikawa M (2003) Mutation of host DnaJ homolog inhibits brome mosaic virus negative-strand RNA synthesis. J Virol 77(5):2990–2997

    Article  PubMed  CAS  Google Scholar 

  • Vivier MA, Pretorius IS (2002) Genetically tailored grapevines for the wine industry. Trends Biotech 20:472–478

    Article  CAS  Google Scholar 

  • Wan J, Dunning FM, Bent AF (2002) Probing plant–pathogen interactions and downstream defense signaling using DNA microarrays. Funct Integr Genomics 2:259–273

    Article  PubMed  CAS  Google Scholar 

  • Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37(3):455–469

    Article  PubMed  CAS  Google Scholar 

  • Whitham S, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33:271–283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Chilean Genome Initiative FONDEF G02S1001 and INNOVA Bio-Bio Grant AL215L1.

Dr. Cramer acknowledges support from the National Science Foundation (NSF) Plant Genome (DBI-0217653) and the Nevada Agricultural Experiment Station, Publication no. 03066922. The Nevada Genomic Center acknowledges support from the NIH IdeA Network of Biomedical Research Excellence (INBRE, RR-03-008), NIH-NCRR Biomedical Research Infrastructure Network (P20 RR016464) and NSF EPSCoR (EPS-0132556) Integrated Approaches to Abiotic Stress Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Arce-Johnson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Change in gene expression level in Vitis vinifera cv. Carménère during infection with GLRaV-3. After data processing and analysis (for details, see Materials and methods) a group of genes with change in their absolute expression level value more than twofold was obtained. This list includes both up- and down-regulated genes (PDF 83 kb)

Table S2

Change in gene expression level in Vitis vinifera cv. Cabernet-Sauvignon during infection with GLRaV-3. After data processing and analysis (for details, see Materials and methods) a group of genes with change in their absolute expression level value more than twofold was obtained. This list includes both up- and down-regulated genes (PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinoza, C., Vega, A., Medina, C. et al. Gene expression associated with compatible viral diseases in grapevine cultivars. Funct Integr Genomics 7, 95–110 (2007). https://doi.org/10.1007/s10142-006-0031-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-006-0031-6

Keywords

Navigation