Skip to main content

Advertisement

Log in

Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant–water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  PubMed  CAS  Google Scholar 

  • Agre P, Sasaki S, Chrispeels M (1993) Aquaporins: a family of water channel proteins. Am J Physiol 261:F461

    Google Scholar 

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  PubMed  CAS  Google Scholar 

  • Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  PubMed  CAS  Google Scholar 

  • Amodeo G, Dorr R, Vallejo A, Stuka M, Parisi M (1999) Radial and axial water transport in the sugar beet storage root. J Exp Bot 50:509–516

    Article  CAS  Google Scholar 

  • Aroca R, Amodeo G, Fernandez-Illescas S, Herman EM, Chaumont F, Chrispeels MJ (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353

    Article  PubMed  CAS  Google Scholar 

  • Azaizeh H, Gunse B, Steudle E (1992) Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiol 99:886–894

    PubMed  CAS  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Pantoja O, Kirch H-H, Bohnert HJ (1999) Aquaporin localization—how valid are the TIP and PIP labels? Trends Plant Sci 4:86–88

    Article  PubMed  Google Scholar 

  • Barrieu F, Thomas D, Martymazars D, Charbonnier M, Marty F (1998) Tonoplast intrinsic proteins from cauliflower (Brassica oleracea L. var. botrytis): immunogold analysis, cDNA cloning and evidence for expression in merstematic tissues. Planta 204:335–344

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci USA 103:269–274

    Article  PubMed  CAS  Google Scholar 

  • Bernstein L (1975) Effects of salinity and sodicity on plant growth. Annu Rev Phytopathol 13:295–312

    Article  Google Scholar 

  • Beuron F, Cahérec FL, Guillam M-T, Cavalier A, Garret A, Tassan J-P, Delamarche C, Schultz P, Mallouh V, Rolland J-P, Hubert J-F, Gouranton J, Thomas D (1995) Structural analysis of a MIP family protein from the digestive tract of Cicadella viridis. J Biol Chem 270:17414–17422

    Article  PubMed  CAS  Google Scholar 

  • Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    Article  PubMed  CAS  Google Scholar 

  • Calamita G, Bishai WR, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J Biol Chem 270:29063–29066

    Article  PubMed  CAS  Google Scholar 

  • Carbrey JM, Bonhivers M, Boeke JD, Agre P (2001) Aquaporins in Saccharomyces: characterization of a second functional water channel protein. Proc Natl Acad Sci USA 98:1000–1005

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti N, Roux B, Pomes R (2004a) Structural determinants of proton blockage in aquaporins. J Mol Biol 343:493–510

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti N, Tajkhorshid E, Roux B, Pomes R (2004b) Molecular basis of proton blockage in aquaporins. Structure 12:65–74

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Herman EM, Chrispeels MJ (1998) Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiol 117:1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Jung R, Chrispeels MJ (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  PubMed  CAS  Google Scholar 

  • Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  PubMed  Google Scholar 

  • Chretien S, Cartron JP, de Figueiredo M (1999) A single mutation inside the NPA motif of aquaporin-1 found in a Colton-null phenotype. Blood 93:4021–4023

    PubMed  CAS  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  PubMed  CAS  Google Scholar 

  • Daniels MJ, Mirkov TE, Chrispeels MJ (1994) The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol 106:1325–1333

    Article  PubMed  CAS  Google Scholar 

  • Daniels MJ, Chaumont F, Mirkov TE, Chrispeels MJ (1996) Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8:587–599

    Article  PubMed  CAS  Google Scholar 

  • de Groot BL, Grubmuller H (2005) The dynamics and energetics of water permeation and proton exclusion in aquaporins. Curr Opin Struct Biol 15:176–183

    Article  PubMed  CAS  Google Scholar 

  • de Groot BL, Frigato T, Helms V, Grubmuller H (2003) The mechanism of proton exclusion in the aquaporin-1 water channel. J Mol Biol 333:279–293

    Article  PubMed  CAS  Google Scholar 

  • Deen PM, Verdijik MA, Knoers NV, Wieringa B, Monnens LA, van Os CH, van Oost BA (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

    Article  PubMed  CAS  Google Scholar 

  • Denker BM, Smith BL, Kuhajda FP, Agre P (1988) Identification, purification and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263:15634–15642

    PubMed  CAS  Google Scholar 

  • Doering-Saad C, Newbury HJ, Bale JS, Pritchard J (2002) Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J Exp Bot 56:631–637

    Article  Google Scholar 

  • Fetter K, Van Wilder V, Moshelion M, Chaumont F (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16:215–228

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein A (1987) Water movement through lipid bilayers, pores, and plasma membranes: theory and reality. In: Distinguished lecture series of the Society of General Physiologists, vol 4. Wiley, New York, pp 1–228

  • Fortin MG, Morrison NA, Verma DPS (1987) Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Res 15:813–824

    Article  PubMed  CAS  Google Scholar 

  • Fotiadis D, Jeno P, Mini T, Wirtz S, Muller S, Fraysse L, Kjellbom P, Engel A (2001) Structural characterisation of two aquaporins isolated from native spinach leaf plasma membranes. J Biol Chem 276:1707–1714

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Libson A, Miercke LJW, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486

    Article  PubMed  CAS  Google Scholar 

  • Gao Y-P, Young L, Bonham-Smith P, Gusta LV (1999) Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol Biol 40:635–644

    Article  PubMed  CAS  Google Scholar 

  • Gaspar M, Bousser A, Sissoëff I, Roche O, Hoarau J, Mahé A (2003) Cloning and characterization of ZmPIP1-5b, an aquaporin transporting water and urea. Plant Sci 165:21–31

    Article  CAS  Google Scholar 

  • Gerbeau P, Güçlü J, Pierre R, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577–587

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006) Expression and functional analysis of the rice plasma membrane intrinsic protein gene family. Cell Res 16:277–286

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson S, Lebrun A-S, Norden K, Chaumont F, Johanson U (2005) A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant Physiol 139:287–295

    Article  PubMed  CAS  Google Scholar 

  • Guttman JA, Samji FN, Li Y, Deng W, Lin A, Finlay BB (2007) Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens. Cell Microbiol 9:131–141

    Article  PubMed  CAS  Google Scholar 

  • Haines TH (1994) Water transport across biological membranes. FEBS Lett 346:115–122

    Article  PubMed  CAS  Google Scholar 

  • Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529

    Article  PubMed  CAS  Google Scholar 

  • Harries WEC, Akhavan D, Miercke LJW, Khademi S, Stroud RM (2004) The channel architecture of aquaporin 0 at a 2.2-Å resolution. Proc Natl Acad Sci USA 101:14045–14050

    Article  PubMed  CAS  Google Scholar 

  • Hedfalk K, Tornroth-Horsefield S, Nyblom M, Johanson U, Kjellbom P, Neutze R (2006) Aquaporin gating. Curr Opin Struct Biol 16:447–456

    Article  PubMed  CAS  Google Scholar 

  • Higuchi T, Suga S, Tsuchiya T, Hisada H, Morishima S, Okada Y, Maeshima M (1998) Molecular cloning, water channel activity and tissue specific expression of two isoforms of radish vacuolar aquaporin. Plant Cell Physiol 39:905–913

    PubMed  CAS  Google Scholar 

  • Höfte H, Hubbard L, Reizer J, Ludevid D, Herman EM, Chrispeels MJ (1992) Vegetative and seed-specific forms of tonoplast intrinsic proteins in the vacuolar membrane of Arabidopsis thaliana. Plant Physiol 99:561–570

    PubMed  Google Scholar 

  • Hollenbach B, Dietz KJ (1995) Molecular-cloning of EMIP, a member of the major intrinsic protein (MIP) gene family, preferentially expressed in epidermal cells of barley leaves. Botanica Acta 108:425–431

    CAS  Google Scholar 

  • Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F (2006) Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 7:149

    Article  PubMed  Google Scholar 

  • Hu J, Verkman AS (2006) Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J 20:1892–1894

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Takeuchi Y, Nishimura M, Hara-Nishimura I (1995) Characterization of two integral membrane proteins located in the protein bodies of pumpkin seeds. Plant Mol Biol 28:1089–1101

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K (2006) Aquaporin subfamily with unusual NPA boxes. Biochim Biophys Acta 1758:989–993

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Kuwahara M, Kageyama Y, Sasaki S, Suzuki M, Imai M (2000) Molecular cloning of a new aquaporin superfamily in mammals: AQPX1 and AQPX2. In: Hohmann S, Nielsen S (eds) Molecular biology and physiology of water and solute transport. Kluwer/Plenum, New York, pp 123–126

    Google Scholar 

  • Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814–5820

    PubMed  CAS  Google Scholar 

  • Jahn TP, Møller ALB, Zeuthen T, Holm LM, Klærke DA, Mohsin B, Kühlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36

    Article  PubMed  CAS  Google Scholar 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725

    Article  PubMed  CAS  Google Scholar 

  • Jauh GY, Phillips TE, Rogers JC (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11:1867–1882

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Güçlü J, Vinh J, Heyes J, Franch KI, Schäffner AR, Bouchez D, Maurel C (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Larsson C, Ek B, Kjellbom P (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell 8:1181–1191

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465:324–342

    Article  PubMed  CAS  Google Scholar 

  • Johnson KD, Herman EM, Chrispeels MJ (1989) An abundant, highly conserved tonoplast protein in seeds. Plant Physiol 91:1006–1013

    Article  PubMed  CAS  Google Scholar 

  • Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14648–14654

    PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Fischer M (2006) Functional aquaporin diversity in plants. Biochim Biophys Acta 1758:1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Grote K, Zhu J-J, Zimmerman U (1998) Significance of plasmalemma aquaporins for water transport in Arabidopsis thaliana. Plant J 14:121–128

    Article  PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Kölling A, Meyers J, Karmann U, Ruppel G, Richter G (1995) The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasmalemma. Plant J 7:87–95

    Article  PubMed  CAS  Google Scholar 

  • Kammerloher W, Fischer U, Piechottka GP, Schäffner AR (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J 6:187–199

    Article  PubMed  CAS  Google Scholar 

  • Katsuhara M, Akiyama Y, Koshio K, Shibasaka M, Kasamo K (2002) Functional analysis of water channels in barley roots. Plant Cell Physiol 43:885–893

    Article  PubMed  CAS  Google Scholar 

  • Katsuhara M, Koshio K, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K (2003) Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant Cell Physiol 44:1378–1383

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S, Borchert C, Deyholes M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5:687–698

    Article  PubMed  CAS  Google Scholar 

  • Kirch H-H, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ (2000) Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol 123:111–124

    Article  PubMed  CAS  Google Scholar 

  • Kobae Y, Mizutani M, Segami S, Maeshima M (2006) Immunochemical analysis of aquaporin isoforms in Arabidopsis suspension-cultured cells. Biosci Biotechnol Biochem 70:980–987

    Article  PubMed  CAS  Google Scholar 

  • Kong Y, Ma J (2001) Dynamic mechanisms of the membrane water channel aquaporin-1 (AQP1). Proc Natl Acad Sci USA 98:14345–14349

    Article  PubMed  CAS  Google Scholar 

  • Kozono D, Ding XD, Iwasaki I, Meng XY, Kamagata Y, Agre P, Kitagawa Y (2003) Functional expression and characterization of an archaeal aquaporin-AqpM from Methanothermobacter marburgensis. J Biol Chem 278:10649–10656

    Article  PubMed  CAS  Google Scholar 

  • Ktitorova IN, Skobeleva OV, Sharova EI, Ermakov EI (2002) Hydrogen peroxide appears to mediate a decrease in hydraulic conductivity in wheat roots under salt stress. Russ J Plant Physiol 49:369–380

    Article  CAS  Google Scholar 

  • Li L, Li S, Tao Y, Kitagawa Y (2000) Molecular cloning of a novel water channel from rice: its products expression in Xenopus oocytes and involvement in chilling tolerance. Plant Sci 154:43–51

    Article  PubMed  CAS  Google Scholar 

  • Lian H-L, Yu X, Ye Q, Ding X, Kitagawa Y, Kwak S-S, Su W-A, Tang Z-C (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    Article  PubMed  CAS  Google Scholar 

  • Lian HL, Yu X, Lane D, Sun WN, Tang ZC, Su WA (2006) Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment. Cell Res 16:651–660

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Umeda M, Uchimiya H (1994) Isolation and expression analysis of two rice genes encoding the major intrinsic protein. Plant Mol Biol 26:2003–2007

    Article  PubMed  CAS  Google Scholar 

  • Liu L-H, Ludewig U, Gassert B, Frommer WB, von Wiren N (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220–1228

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Guo CA, Ren HB, Chen F (2004) Isolation and characterization of a novel cis-acting sequences regulating root-specific gene from Daucus carota L. Chinese Sci Bull 49:2393–2398

    Article  CAS  Google Scholar 

  • Lopez F, Bousser A, Sissoeff I, Hoarau J, Mahe A (2004) Characterization in maize of ZmTIP2-3, a root-specific tonoplast intrinsic protein exhibiting aquaporin activity. J Exp Bot 55:539–541

    Article  PubMed  CAS  Google Scholar 

  • Loque D, Ludewig U, Yuan LX, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 132:671–680

    Article  CAS  Google Scholar 

  • Lu D, Grayson P, Schulten K (2003) Glycerol conductance and physical asymmetry of the Escherichia coli glycerol facilitator GlpF. Biophys J 85:2977–2987

    PubMed  CAS  Google Scholar 

  • Ludevid D, Höfte H, Himelblau E, Chrispeels MJ (1992) The expression pattern of the tonoplast intrinsic protein γ-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiol 100:1633–1639

    PubMed  CAS  Google Scholar 

  • Luu D-T, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96

    Article  CAS  Google Scholar 

  • Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ (2004) Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant J 40:845–859

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Macey RI (1984) Transport of water and urea in red blood cells. Am J Physiol 246:C195–C203

    PubMed  CAS  Google Scholar 

  • Maeshima M, Mimura T, Sato T (1994) Distribution of vacuolar H+-pyrophosphatase and a membrane integral protein in a variety of green plants. Plant Cell Physiol 35:323–328

    CAS  Google Scholar 

  • Malz S, Sauter M (1999) Expression of two PIP genes in rapidly growing internodes of rice is not primarily controlled by meristem activity or cell expansion. Plant Mol Biol 40:985–995

    Article  PubMed  CAS  Google Scholar 

  • Martre P, Morillon R, Barrieu F, North GB, S. NP, Chrispeels MJ (2002) Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol 130:2101–2110

    Article  PubMed  CAS  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol 48:399–429

    Article  CAS  Google Scholar 

  • Maurel C, Reizer JU, Schroeder JI, Chrispeels MJ (1993) The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytes. EMBO J 12:2241–3347

    PubMed  CAS  Google Scholar 

  • Maurel C, Kado RT, Guern J, Chrispeels MJ (1995) Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP. EMBO J 14:3028–3035

    PubMed  CAS  Google Scholar 

  • Maurel C, Chrispeels MJ, Lurin C, Tacnet F, Geelen D, Ripoche P, Guern J (1997a) Function and regulation of seed aquaporins. J Exp Bot 48:421–430

    CAS  Google Scholar 

  • Maurel C, Tacnet F, Guclu J, Guern J, Ripoche P (1997b) Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity. Proc Natl Acad Sci USA 94:7103–7108

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Javot H, Lauvergeat V, Gerbeau P, Tournaire C, Santoni V, Heyes J (2002) Molecular physiology of aquaporins in plants. Int Rev Cytol 215:105–148

    Article  PubMed  CAS  Google Scholar 

  • Meristem Land & Science (2002) ‘Aquaporin’ genes hold key to sprouting-resistant cereal crops. Meristem Information Resources Ltd. October 25, 2002. Cited October 6 2004. http://www.meristem.com/wheat/ws02_08.html

  • Mitra BN, Yoshino R, Morio T, Yokoyama M, Maeda M, Urushihara H, Tanaka Y (2000) Loss of a member of the aquaporin gene family, aqpA affects spore dormancy in Dictyostelium. Gene 27:131–139

    Article  Google Scholar 

  • Morillon R, Lassalles J-P (2002) Water deficit during root development: effects on the growth of roots and osmotic water permeability of isolated root protoplasts. Planta 214:392–399

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  PubMed  CAS  Google Scholar 

  • Niemietz CM, Tyerman SD (1997) Characterization of water channels in wheat root membrane vesicles. Plant Physiol 115:561–567

    PubMed  CAS  Google Scholar 

  • Niemietz CM, Tyerman SD (2000) Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett 465:110–114

    Article  PubMed  CAS  Google Scholar 

  • Ohshima Y, Iwasaki I, Suga S, Murkamami M, Inoue K, Maeshima M (2001) Low aquaporin content and low osmotic water permeability of the plasma and vacuolar membranes of a CAM plant Graptopetalum paraguayense: comparison with radish. Plant Cell Physiol 42:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J 34:868–887

    Article  PubMed  CAS  Google Scholar 

  • Oono Y, Seki M, Satou M, Iida K, Akiyama K, Sakurai T, Fujita M, Yamaguchi-Shinozaki K, Shinozaki K (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Integr Genomics 6:212–234

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Carroll TP, Guggino WB, Agre P (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Jung JS, Guggino WB, Agre P (1993) The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem 268:17–20

    PubMed  CAS  Google Scholar 

  • Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2001) From genome to function: the Arabidopsis aquaporins. Genome Biol 3:research0001.1–research0001.17

    Article  Google Scholar 

  • Reizer J, Reizer A, Saier MHJ (1993) The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit Rev Biochem Mol Biol 28:235–257

    PubMed  CAS  Google Scholar 

  • Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML (1997) Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J Biol Chem 272:16256–16261

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  PubMed  CAS  Google Scholar 

  • Robinson DG, Sieber H, Kammerloher W, Schäffner AR (1996) PIP1 aquaporins are concentrated in plasmalemmasomes of Arabidopsis thaliana mesophyll. Plant Physiol 11:645–649

    Google Scholar 

  • Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792

    Article  PubMed  CAS  Google Scholar 

  • Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263–284

    Article  PubMed  CAS  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  PubMed  CAS  Google Scholar 

  • Sarda X, Tousch D, Ferrare K, Legrand E, Dupuis JM, Casse-Delbart F, Lamaze T (1997) Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells. Plant J 12:1103–1111

    Article  PubMed  CAS  Google Scholar 

  • Savage DF, Egea PF, Robles-Colmenares Y, O’Connell JD, Stroud RM (2003) Architecture and selectivity in aquaporins: 2.5 Å X-ray structure of Aquaporin Z. PLoS Biol 1:334–340

    Article  CAS  Google Scholar 

  • Schunmann PH, Ougham HJ (1996) Identification of three cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley: a tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase. Plant Mol Biol 31:529–537

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P (2000) A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915

    Article  PubMed  CAS  Google Scholar 

  • Siefritz F, Otto B, Bienert GP, van der Krol A, Kaldenhoff R (2004) The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J 37:147–155

    PubMed  CAS  Google Scholar 

  • Smith BL, Agre P (1991) Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J Biol Chem 266:6407–6415

    PubMed  CAS  Google Scholar 

  • Smith-Espinoza CJ, Richter A, Salamini F, Bartels D (2003) Dissecting the response to dehydration and salt (NaCl) in the resurrection plant Craterostigma plantagineum. Plant Cell Environ 26:1307–1315

    Article  CAS  Google Scholar 

  • Sui H, Han B-G, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  PubMed  CAS  Google Scholar 

  • Tajkhorshid E, Nollert P, Jensen MO, Miercke LJW, O’Connell J, Stroud RM, Schulten K (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–530

    Article  PubMed  CAS  Google Scholar 

  • Takata K, Matsuzaki T, Tajika Y (2004) Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 39:1–83

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Bron P, Ranchy G, Duchesne L, Cavalier A, Rolland J-P, Raguenes-Nicol C, Hubert J-F, Haase W, Delamarche C (2002) Aquaglyceroporins, one channel for two molecules. Biochim Biophys Acta-Bioenergetics 1555:181–186

    Article  CAS  Google Scholar 

  • Tyerman S, Bohnert H, Maurel C, Steudle E, Smith J (1999) Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50:1055–1071

    Article  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  PubMed  CAS  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  PubMed  CAS  Google Scholar 

  • van Hoek AN, Hom ML, Luthjens LH, de Jong MD, Dempster JA, van Os CH (1991) Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J Biol Chem 266:16633–16635

    PubMed  Google Scholar 

  • Vander Willigen C, Pammenter NW, Mundree SG, Farrant JM (2004) Mechanical stabilization of desiccated vegetative tissues of the resurrection grass Eragrostis nindensis: does a TIP 3;1 and/or compartmentalization of subcellular components and metabolites play a role? J Exp Bot 55:651–661

    Article  Google Scholar 

  • Vander Willigen C, Postaire O, Tournaire-Roux C, Boursiac Y, Maurel C (2006) Expression and inhibition of aquaporins in germinating Arabidopsis seeds. Plant Cell Physiol 47:1241–1250

    Article  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiol 135:2318–2329

    Article  PubMed  CAS  Google Scholar 

  • Verbavatz JM, Brown D, Sabolic I, Valenti G, Ausiello DA, Van Hoek AN, Ma T, Verkman AS (1993) Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J Cell Biol 123:605–618

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS (2000) Water permeability measurement in living cells and complex tissues. J Membr Biol 173:73–87

    Article  PubMed  CAS  Google Scholar 

  • Veselova TV, Veselovskii VA, Usmanov PD, Usmanova OV, Kozar VI (2003) Hypoxia and imbibition injuries to aging seeds. Russ J Plant Physiol 50:835–842

    Article  CAS  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    Article  PubMed  CAS  Google Scholar 

  • Wallace IS, Roberts DM (2005) Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44:16826–16834

    Article  PubMed  CAS  Google Scholar 

  • Wallace IS, Wills DM, Guenther JF, Roberts DM (2002) Functional selectivity for glycerol of the nodulin 26 subfamily of plant membrane intrinsic proteins. FEBS Lett 523:109–112

    Article  PubMed  CAS  Google Scholar 

  • Walz T, Typke D, Smith BL, Agre P, Engel A (1995) Projection map of aquaporin-1 determined by electron crystallography. Nat Struct Biol 3:730–732

    Article  Google Scholar 

  • Wang Y, Schulten K, Tajkhorshid E (2005) What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF. Structure 13:1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Bohnert HJ (2000) Expression of the PIP aquaporin promoter-MipA from the common ice plant in tobacco. Plant Cell Physiol 41:719–725

    PubMed  CAS  Google Scholar 

  • Yamada S, Katsuhara M, Kelly WB, Michalowski CB, Bohnert HJ (1995) A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant. Plant Cell 7:1129–1142

    Article  PubMed  CAS  Google Scholar 

  • Yamada C, Nelson D, Ley E, Marquez S, Bohnert HJ (1997) The expression of an aquaporin promoter from Mesembryanthemum crystallinum in tobacco. Plant Cell Physiol 38:1326–1332

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol 33:217–224

    CAS  Google Scholar 

  • Yamamoto YT, Taylor CG, Acedo GH, Cheng C-L, Conkling MA (1991) Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell 3:371–382

    Article  PubMed  CAS  Google Scholar 

  • Yu QJ, Hu YL, Li JF, Wu Q, Lin ZP (2005) Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassica napus in tobacco and its effects on plant drought resistance. Plant Sci 169:647–656

    Article  CAS  Google Scholar 

  • Yu X, Peng YH, Zhang MH, Shao YJ, Su WA, Tang ZC (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16:599–608

    Article  PubMed  CAS  Google Scholar 

  • Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414

    PubMed  CAS  Google Scholar 

  • Zardoya R, Villalba S (2001) A phylogenetic framework for the Aquaporin family in eukaryotes. J Mol Evol 52:391–404

    PubMed  CAS  Google Scholar 

  • Zeidel ML, Ambudkar SV, Smith BL, Agre P (1992) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31:7436–7440

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Zhong Y, Luo L (2006) Drought tolerance genes in rice. Funct Integr Genomics 6:338–341

    Article  PubMed  CAS  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  • Zhang W-H, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857

    Article  PubMed  CAS  Google Scholar 

  • Zhang WH, Tyerman SD (1991) Effect of low O2 concentration and azide on hydraulic conductivity and osmotic volume of cortical cells of wheat roots. Aust J Plant Physiol 18:603–613

    Article  Google Scholar 

  • Zhang R, van Hoek AN, Biwersi J, Verkman AS (1993) A point mutation at cysteine-189 blocks the water permeability of rat kidney water channel CHIP28k. Biochemistry 32:2938–2941

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Schraut D, Hartung W, Schaffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56:2971–2981

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

KF (nee’ Smith) thanks the Grains Research and Development Corporation, Australia (GRDC) for a Ph.D. scholarship. The authors gratefully acknowledge Prof. Rudi Appels for the critical editorial comments on the manuscript, which benefited its preparation significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Bhave.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrest, K.L., Bhave, M. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 7, 263–289 (2007). https://doi.org/10.1007/s10142-007-0049-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-007-0049-4

Keywords

Navigation