Skip to main content
Log in

Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Endodormant grapevine buds require a period of chilling before they break and begin to grow. Custom Vitis bud cDNA microarrays (9,216 features) were used to examine gene expression patterns in overwintering Vitis riparia buds during 2,000 h of 4°C chilling. Three-node cuttings collected concurrently with buds were monitored to determine dormancy status. Chilling requirement was fulfilled after 1,500 h of chilling; however, 2,000 h of chilling significantly increased the rate of bud break. Microarray analysis identified 1,469 significantly differentially expressed (p value < 0.05) array features when 1,000, 1,500, and 2,000 h of chilling were compared to 500 h of chilling. Functional classification revealed that the majority of genes were involved in metabolism, cell defense/stress response, and genetic information processing. The number of significantly differentially expressed genes increased with chilling hour accumulation. The expression of a group of 130 genes constantly decreased during the chilling period. Up-regulated genes were not detected until the later stages of chilling accumulation. Hierarchical clustering of non-redundant expressed sequence tags revealed inhibition of genes involved in carbohydrate and energy metabolism and activation of genes involved in signaling and cell growth. Clusters with expression patterns associated with increased chilling and bud break were identified, indicating several candidate genes that may serve as indicators of bud chilling requirement fulfillment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alboresi A, Gestin C, Leydecker MT, Bedu M, Meyer C, Truong HN (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ 28:500–512

    Article  PubMed  CAS  Google Scholar 

  • Ausín I, Alonso-Blanco C, Martínez-Zapater J-M (2005) Environmental regulation of flowering. Int J Dev Biol 49:689–705

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Bernier G, Périlleux C (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3:3–16

    Article  PubMed  CAS  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat Genet 29:365–371

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Ballif J, Endo S, Davis E, Liang M, Chen D, DeWald D, Kreps J, Zhu T, Wu Y (2007) A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol 145:98–105

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116

    Article  CAS  Google Scholar 

  • Chrispeels MJ, Agre P (1994) Aquaporins: water channel proteins of plant and animal cells. Trends Biochem Sci 19:421–425

    Article  PubMed  CAS  Google Scholar 

  • CoHort Software (2005) CoStat. www.cohort.com. Monterey, CA

  • Davies PJ (1995) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant kormones: physiology, biochemistry and molecular biology. Kluwer, Boston, pp 13–38

    Google Scholar 

  • Deng W, Liu C, Pei Y, Deng X, Niu L, Cao X (2007) Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis. Plant Physiol 143:1660–1668

    Article  PubMed  CAS  Google Scholar 

  • Derory J, Léger P, Garcia V, Schaeffer J, Hauser M-T, Salin F, Luschnig C, Plomion C, Glössl J, Kremer A (2006) Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytol 170:723–738

    Article  PubMed  CAS  Google Scholar 

  • Dhanaraj AL, Slovin JP, Rowland LJ (2004) Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci 166:863–872

    Article  CAS  Google Scholar 

  • Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H, Arora R, Rowland LJ (2007) Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta 225:735–751

    Article  PubMed  CAS  Google Scholar 

  • Dokoozlian NZ (1999) Chilling temperature and duration interact on budbreak of ‘Perlette’ grapevine cuttings. HortScience 34(6):1054–1056

    Google Scholar 

  • Dokoozlian NK, Williams LE, Neja RA (1995) Chilling exposure and hydrogen cyanamide interact in breaking dormancy of grape buds. HortScience 30:1244–1247

    CAS  Google Scholar 

  • Donohue K, Heschel MS, Chiang GCK, Butler CM, Barua K (2007) Phytochrome mediates germination responses to multiple seasonal cues. Plant Cell Environ 30:202–212

    Article  PubMed  Google Scholar 

  • Fankhauser C, Chory J (1997) Light control of plant development. Annu Rev Cell Dev Biol 13:203–229

    Article  PubMed  CAS  Google Scholar 

  • Fennell A, Hoover E (1991) Photoperiod influences growth, bud dormancy, and cold acclimation in Vitis labruscana and V. riparia. J Am Soc Hortic Sci 116:270–273

    Google Scholar 

  • Fennell A, Mathiason K (2002) Early acclimation response in grapes (Vitis). In: Li PH, Palva ET (eds) Plant cold hardiness: gene regulation and genetic engineering. Kluwer Academic, New York, pp 93–107

    Google Scholar 

  • Fennell A, Wake C, Molitor P (1996) Use of 1H-NMR to determine grape bud water state during the photoperiodic induction of dormancy. J Am Soc Hortic Sci 121(6):1112–1116

    Google Scholar 

  • Fennell A, Baldo A, Mathiason K (2005) Analysis of gene expression in paradormant and endodormant Vitis riparia buds using ESTs and NCBI Vitis expressed sequence data. International Grape Genomics Symposium, St. Louis, MO

  • Forde BG, Clarkson DT (1999) Nitrate and ammonium nutrition of plants: physiological and molecular perspective. Adv Bot Res 30:1–90

    Article  CAS  Google Scholar 

  • Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 7:263–289

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Hirakawa Y, Sawa S (2007) Peptide signaling in vascular development. Curr Opin Plant Biol 10(5):477–482

    Article  PubMed  CAS  Google Scholar 

  • Gerrath JM, Posluszny U (1988) Morphological and anatomical development in the Vitaceae. I. Vegetative development in Vitis riparia. Can J Bot 66:209–224

    Article  Google Scholar 

  • Halliday KJ, Thomas B, Whitelam GC (1997) Expression of heterologous phytochromes A, B or C in transgenic tomato plants alters vegetative development and flowering time. Plant J 12(5):1079–1090

    Article  PubMed  CAS  Google Scholar 

  • Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1(2):e26

    Article  PubMed  Google Scholar 

  • Hemstad PR, Luby JJ (2000) Utilization of Vitis riparia for the development of new wine varieties with resistance to disease and extreme cold. Acta Hortic 528:487–490

    Google Scholar 

  • Hewezi T, Léger M, Kayal WE, Gentzbittel L (2006) Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity. J Exp Bot 57(12):3109–3122

    Article  PubMed  CAS  Google Scholar 

  • Horvath DP (2007) Microarray results corresponding to Geo Series accession number GSE8849 link at http://horvathdp.googlepages/com/recentresults, Accessed June 2007.

  • Horvath DP, Anderson JV, Soto-Suarez M, Chao WS (2006) Transcriptome analysis of leafy spurge (Euphorbia esula) crown buds during shifts in well-defined phases of dormancy. Weed Sci 54:821–827

    Article  CAS  Google Scholar 

  • Horvath DP, Chao WS, Anderson J, Thimmapuram J (2008) Transcriptome analysis identifies novel responses and a likely regulatory gene involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). (in press)

  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato Y, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi Y (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki K, Weaver RJ (1977) Effects of chilling, calcium cyanamide, and bud scale removal on bud break, rooting, and inhibitor content of buds of ‘Zinfandel’ grape (Vitis vinifera L.). J Am Soc Hortic Sci 5:584–587

    Google Scholar 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725

    Article  PubMed  CAS  Google Scholar 

  • Jang JY, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H (2007) Transgenic Arabidopsis and tobacco plants overexpessing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol 64:621–632

    Article  PubMed  CAS  Google Scholar 

  • Josefsson LG, Rask L (1997) Cloning of a putative G-protein-coupled receptor from Arabidopsis thaliana. Eur J Biochem 249:415–420

    Article  PubMed  CAS  Google Scholar 

  • Keilin T, Pang X, Venkateswari J, Halaly T, Crane O, Keren A, Ogrodovitch A, Ophir R, Volpin H, Galbraith D, Or E (2007) Digital expression profiling of a grape-bud EST collection leads to new insight into molecular events during grape-bud dormancy release. Plant Sci 173:446–457

    Article  CAS  Google Scholar 

  • Kerr MK (2003) Design considerations for efficient and effective microarray studies. Biometrics 59:822–828

    Article  PubMed  Google Scholar 

  • Kliewer WM, Soleimani A (1972) Effect of chilling on budbreak in ‘Thompson Seedless’ and ‘Carignane’ grapevines. Am J Enol Vitic 23:32–34

    Google Scholar 

  • Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  PubMed  CAS  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Lang GA, Early JD, Arroyave NJ, Darnell RL, Martin GC, Stutte GW (1985) Dormancy: toward a reduced, universal terminology. HortScience 205(5):809–812

    Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22(3):371–377

    Google Scholar 

  • Lavee S, May P (1997) Dormancy of grapevine buds—facts and speculation. Aust J Grape Wine Res 3:31–46

    Article  CAS  Google Scholar 

  • Lee B-H, Henderson DA, Zhu J-K (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  PubMed  CAS  Google Scholar 

  • Lorenzi R, Ceccarelli N, Lercari B, Gualtieri P (1994) Identification of retinal in higher plants: is a rhodopsin-like protein the blue light receptor? Phytochem 36(3):599–600

    Article  CAS  Google Scholar 

  • Luby JJ, Mansfield AK, Hemstad PR, Beam BA (2003) Development and evaluation of cold hardy wine grape breeding selections and cultivars in the upper Midwest. AVERN Report

  • Marin E, Divol F, Bechtold N, Vavasseur A, Nussaume L, Forestier C (2006) Molecular characterization of three Arabidopsis soluble ABC proteins which expression is induced by sugars. Plant Sci 171:84–90

    Article  CAS  Google Scholar 

  • Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu Ü, Müller-Röber B, Schulz B (2002) Multifunctionality of plant ABC transporters—more than just detoxifiers. Planta 214:345–355

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi Y, Takagi L, Sakagami Y (1997) Phytosulfokine-a, a sulfated pentapeptide, stimulates the proliferation of rice cells by means of specific high- and low-affinity binding sites. Proc Natl Acad Sci U S A 94:13357–13362

    Article  PubMed  CAS  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58(5):1035–1045

    Article  PubMed  CAS  Google Scholar 

  • McDowell JM, An Y, Huang S, McKinney EC, Meagher RB (1996) The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol 111:699–711

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB, McKinney EC, Vitale AV (1999) The evolution of new structures: clues from plant cytoskeletal genes. Trends Genet 15(7):278–284

    Article  PubMed  CAS  Google Scholar 

  • Pacey-Miller T, Scott K, Ablett E, Tingey S, Ching A, Henry R (2003) Genes associated with the end of dormancy in grapes. Funct Integr Genomics 3:144–152

    Article  PubMed  CAS  Google Scholar 

  • Pang X, Halally T, Crane O, Keilin T, Keren-Keiserman A, Ogrodovitch A, Galbraith D, Or E (2007) Involvement of calcium signaling in dormancy release of grape buds. J Exp Bot 58(12):3249–3262

    Article  PubMed  CAS  Google Scholar 

  • Paolicchi F, Lombardi L, Ceccarelli N, Lorenzi R (2005) Are retinal and retinal-binding proteins involved in stomatal response to blue light? Funct Plant Biol 32:1135–1141

    Article  CAS  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005) Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiol 138:142–152

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pierquet P, Stushnoff C (1978) Variation and breeding potential of some northern clones of Vitis riparia Michx. Fruit Var J 32:74–84

    Google Scholar 

  • Pratt C (1974) Vegetative anatomy of cultivated grapes—a review. Am J Enol Vitic 25(3):131–150

    Google Scholar 

  • Provart NJ, Gil P, Chen W, Han B, Chang H-S, Wang X, Zhu T (2003) Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiol 132:893–906

    Article  PubMed  CAS  Google Scholar 

  • Proveniers M, Rutjens B, Brand M, Smeekens S (2007) The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J 52:899–913

    Article  PubMed  CAS  Google Scholar 

  • Qin M, Kuhn R, Moran S, Quail PH (1997) Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion. Plant J 12(5):1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    Article  PubMed  CAS  Google Scholar 

  • Ricart CAO, Wise A, Findlay JBC, Millner PA (2000) Presence of rhodopsin-like proteins in Sorghum bicolor and Pisum sativum. J Plant Physiol 156:300–305

    CAS  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34(2):374–8

    PubMed  CAS  Google Scholar 

  • Sakr S, Alves G, Morillon R, Maurel K, Decourteix M, Guilliot A, Fleurat-Lessard P, Julien JL, Chrispeels MJ (2003) Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiol 133:630–641

    Article  PubMed  CAS  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Bio 6:242

    Article  Google Scholar 

  • Santanen A, Simola LK (2007) Polyamine levels in buds and twigs of Tilia cordata from dormancy onset to bud break. Trees 21:337–344

    Article  CAS  Google Scholar 

  • Schäffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204:131–139

    Article  PubMed  Google Scholar 

  • Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao RP (2004) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40:173–187

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Slater JV, Warmund MR, George MF, Ellersieck MR (1991) Deacclimation of winter hardy ‘Seyval blanc’ grape tissue after exposure to 16°C. Sci Hortic 45:273–285

    Article  Google Scholar 

  • Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(1):Article 3

  • Smyth GK (2005) Individual channel analysis of two-color microarray data. Invited Session IPM 11: Computational Tools For Microarray Analysis, 55th Session of the International Statistics Institute, Sydney, 12 April 2005

  • Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273

    Article  PubMed  CAS  Google Scholar 

  • Tabor H, Tabor CW (1964) Spermidine, spermine, and related amines. Pharmacol Rev 16:245–300

    PubMed  CAS  Google Scholar 

  • Tattersall EAR, Grimplet J, DeLuc L, Wheatley MD, Vincent D, Osborne C, Ergül A, Lomen E, Blank RR, Schlauch KA, Cushman JC, Cramer GR (2007) Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Integr Genomics 7:317–333

    Article  PubMed  CAS  Google Scholar 

  • Tischner R (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ 23:1005–1024

    Article  CAS  Google Scholar 

  • Tóth R, Kevei É, Hall A, Millar AJ, Nagy F, Kozma-Bognár L (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127:1607–1616

    Article  PubMed  Google Scholar 

  • Tsuwamoto R, Fukuoka H, Takahata Y (2007) Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta 225:641–652

    Article  PubMed  CAS  Google Scholar 

  • Umehara M, Ogita S, Sasamoto H, Eun CH, Matsubayashi Y, Sakagami Y, Kamada H (2005) Two stimulatory effects of the peptidyl growth factor phytosulfokine during somatic embryogenesis in Japanese larch (Larix leptolepis Gordon). Plant Sci 169(5):901–907

    Article  CAS  Google Scholar 

  • Vander Willigen C, Postaire O, Tournaire-Roux C, Boursiac Y, Maurel C (2006) Expression and inhibition of aquaporin in germinating Arabidopsis seeds. Plant Cell Physiol 47(9):1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Wake CMF, Fennell A (2000) Morphological, physiological and dormancy responses of three Vitis genotypes to short photoperiod. Physiol Plant 109:203–210

    Article  CAS  Google Scholar 

  • Wang SY, Faust M (1994) Changes in polyamine content during dormancy in flower buds of ‘Anna’ apple. J Am Soc Hortic Sci 119(1):70–73

    CAS  Google Scholar 

  • Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Biol 54:691–722

    Article  PubMed  CAS  Google Scholar 

  • Weaver RJ, Iwasaki K (1977) Effect of temperature and length of storage, root growth and termination of bud rest in Zinfandel grapes. Am J Enol Vitic 28(3):149–151

    Google Scholar 

  • Wei H, Dhanaraj AL, Rowland LJ, Fu Y, Krebs SL, Arora R (2005) Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta 221:406–416

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev IA, Fossdal C-G, Johnsen Ø, Junttila O, Skrøppa T (2006) Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genetics & Genomes 2:39–52

    Article  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

    Article  PubMed  CAS  Google Scholar 

  • Yang YH, Thorne NP (2003) Normalization for two-color cDNA microarray data. In: Goldstein DR (ed) Science and statistics: a festschrift for Terry Speed, IMS lecture notes—monograph series. 40:403–418

  • Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580:1183–1191

    Article  PubMed  CAS  Google Scholar 

  • Zhang CK, Lang P, Dane F, Ebel RC, Singh NK, Locy RD, Dozier WA (2005) Cold acclimation induced genes of trifoliate orange (Poncirus trifoliate). Plant Cell Rep 23:764–769

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Provart NJ (2003) Transcriptional responses to low temperature and their regulation in Arabidopsis. Can J Bot 81:1168–1174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the United States–Israel Binational Agricultural Research and Development Fund (BARD) IS-3340-02 and the National Science Foundation (NSF) Plant Genome Program DBI0604755. This material is based upon work conducted using the South Dakota State University Functional Genomics Core Facility supported in part by the National Science Foundation/EPSCoR Grant No. 0091948 and by the State of South Dakota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Fennell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 33.0 KB)

ESM2 (DOC 86.5 KB)

ESM3 (DOC 212 KB)

ESM4 (XLS 115 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathiason, K., He, D., Grimplet, J. et al. Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics 9, 81–96 (2009). https://doi.org/10.1007/s10142-008-0090-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-008-0090-y

Keywords

Navigation