Skip to main content

Advertisement

Log in

Applications of LDL-apheresis in nephrology

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

LDL-apheresis (LA) was originally used for familial hyperlipidemia, and then in Japan extended to use for the treatment of patients with peripheral arterial disease (PAD) and nephrotic syndrome due to steroid-resistant focal glomerular sclerosis (FGS). The reason why this treatment is applicable for these disorders is due to the fact that LA exerts its favorable effects beyond the lipid-lowering effect. The main underlying mechanisms, for example, in the case of LA application in patients with PAD are: (1) improvement of hemorheology, (2) improvement of endothelial dysfunction, (3) elevations of serum levels of NO and bradykinin, (4) increase in serum levels of vascular endothelial growth factor, and (5) reduction of adhesion molecules on monocytes. Furthermore, we have reported that LA could have anti-inflammatory effects because LA reduces serum levels of P-selectin, which is known to play an important role in the development of atherosclerosis as well as a reduction of serum C-reactive protein levels as standard biomarker of atherosclerosis. Massive proteinuria is also an important challenge in nephrology. The possible mechanisms besides removal of toxic lipids are the reduction of the vasoconstrictive prostanoid and thromboxane A2 (TXA2) and an improvement in macrophage function evidenced by a significant amelioration of interleukin-8 production by lipopolysaccharide-stimulated peripheral blood mononuclear cells. It is intriguing to note that in terms of pharmacodynamics, LA improves steroid and cyclosporine uptake into lymphocytes. Although there are no randomized controlled trials, it is clear that LA has various effects beyond lowering lipids. Making the device more concise and changing it into a whole blood adsorption type, we need to collect more clinical cases and to study the underlying mechanisms further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thompson GR, Lowenthal R, Myant NB. Plasma exchange in the management of homozygous familial hypercholesterolaemia. Lancet. 1975;I:1208–11.

    Article  Google Scholar 

  2. Stoffel W, Borberg H, Greve V. Application of specific extracorporeal removal of low-density lipoprotein in familial hyperlipidemia. Lancet. 1981;ii:1005–7.

    Article  Google Scholar 

  3. Yokoyama S,Hayashi R, Satani M, Yamamoto A. Selective removal of low density lipoprotein by plasmapheresis in familial hypercholesterolemia. Arteriosclerosis. 1985;5:613–21.

    Article  CAS  PubMed  Google Scholar 

  4. Saal SD, Parker TS, Gordon BR, Studebaker J, Hudgins L, Ahrens EH Jr, Rubin AL: Removal of low-density lipoproteins in patients by extracorporeal immunoadsorption. Am J Med. 1986;80:583–9.

    Article  CAS  PubMed  Google Scholar 

  5. Knisel W, Di Nicuolo A, Pfohl M, Muller H, Risler T, Eggstein M, Seifried E. Different effects of two methods of low-density lipoprotein apheresis on the coagulation and fibrinolytic systems. J Int Med. 1993;234:479–87.

    Article  CAS  Google Scholar 

  6. Bosch T, Lennertz A, Schmidt B. DALI apheresis in hyperlipidemic patients: biocompatibility, efficacy, and selective of direct adsorption of lipoproteins from whole blood. Artif Organs. 2000;24:81–90.

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi S, Moriya H, Negishi K, Maesato K, Ohtake T. LDL-apheresis up-regulates VEGF and IGF-I in patients with ischemic limb. J Clin Apheresis. 2003;18:115–9.

    Article  PubMed  Google Scholar 

  8. O’Hare A, Johansen K. Lower-extremity peripheral arterial disease among patients with end-stage renal disease. J Am Soc Nephrol. 2001;12:2838–47.

    PubMed  Google Scholar 

  9. Thompson GR, Myant NB, Kilpatrick D, Oakley CM, Raphael MJ, Steiner RE. Assessment of long-term plasma-exchange for familial hypercholesteromia. Br Heart J. 1980;43:680–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rubba P, Postiglione A, Scarpato N, Iannuzzi A, Mancini M. Improved reactive hyperemia test after plasma exchange in familial hypercholesteromia. Atherosclerosis. 1985;56:237–42.

    Article  CAS  PubMed  Google Scholar 

  11. Agishi T, Kitano Y, Suzuki T, Miura A, Murakami J, Minagawa H. Improvement of peripheral circulation by low density lipoprotein adsorption. Trans Am Soc Artif Intern Organs. 1989;35:349–51.

    Article  CAS  Google Scholar 

  12. Agishi T, Naganuma S, Nakasato S, Kitajima K, Ota K, Ban K. Treatment of arteriosclerotic obstruction by LDL adsorption. Angiology. 1993;44:222–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kroon AA, Aengevaeren WR, van der Werf T, Uijen GJ, Reiber JH, Bruschke AV, Stalenhoef AF. The LDL-Apheresis Atherosclerosis Regression Study (LAARS). Effect of aggressive versus conventional lipid lowering treatment on coronary atherosclerosis. Circulation. 1996;93:1826–35.

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi S. LDL-aphereis for diabetic nephropathy: a possible new tool. Nephron. 1998;79:505–6.

    Article  CAS  PubMed  Google Scholar 

  15. Mii S, Mori A, Sakata H, Nakayama M, Tsuruta H. LDL-apheresis for arteriosclerosis obliterans with occluded bypass graft: change in prostacyclin and effect on ischemic syndrome. Angiology. 1998;49:175–80.

    Article  CAS  PubMed  Google Scholar 

  16. Koenig W, Ditschuneit HH, Grunewald RW, Ernst E, Hombach V. Blood rheology after apheresis using dextran sulfate cellulose absorption—a case report. Angiology. 1992;43:606–9.

    Article  CAS  PubMed  Google Scholar 

  17. Naganuma S, Agishi T, Ota K. Hemorheological effects of low density lipoprotein apheresis on atherosclerosis disease with hyperlipidemia. Therap Plasm. 1993;12:443–5.

    Google Scholar 

  18. Murashima J, Ueki Y, Matsunaga Y, Yano M, Matsumoto K, Miyake S, Tominaga Y, Eguchi K, Yano K. Removal of low-density lipoprotein from plasma by adsorption increases bradykinin and plasma nitric oxide levels in patients with peripheral atherosclerosis. Blood Coag Fibrinol. 1998;9:725–32.

    Article  CAS  Google Scholar 

  19. Uno H, Ueki Y, Murashima J, Miyake S, Tominaga Y, Eguchi K, Yano K. Removal of LDL from plasma by adsorption reduces adhesion molecules on mononuclear cells in patients with arteriosclerotic obliterans. Atherosclerosis. 1995;116:93–02.

    Article  CAS  PubMed  Google Scholar 

  20. Tamai O, Matsuoka H, Itabe H, Wada Y, Kohno K, Imaizumi T. Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation. 1997;95:76–82.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura T, Matsuda T, Suzuki Y, Ueda Y, Koide H. Effects of low-density lipoprotein apheresis on plasma matrix metalloproteinase-9 and serum tissueinhibitor of metalloproteinase-1 levels in diabetic hemodialysis patients with arteriosclerosis obliterans. ASAIO J. 2003;49:430–4.

    PubMed  CAS  Google Scholar 

  22. Kojima S, Shida M, Tanaka K, Takano H, Yokoyama H, Kuramochi M. Acute changes in plasma levels of hepatocyte growth factor during low-density lipoprotein apheresis. Therap Apheresis. 2001;5:2–6.

    Article  CAS  Google Scholar 

  23. Ferrara N, Gerber HP. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 2001;106:148–56.

    Article  CAS  PubMed  Google Scholar 

  24. Zapf J, Froesch ER. Insulin-like growth factor/somatomedins: structures, secretion, biological actions and physiological role. Horm. Res. 1986;24:121–30.

    Article  CAS  PubMed  Google Scholar 

  25. Hansson H, Jennische E, Skottner A. Regenerating endothelial cells express insulin-like growth factor-I immunoreactivity after arterial injury. Cell Tissue Res. 1987;250:499–05.

    Article  CAS  PubMed  Google Scholar 

  26. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.

    Article  CAS  PubMed  Google Scholar 

  27. Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 1999;56:794–14.

    Article  CAS  PubMed  Google Scholar 

  28. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.

    Article  CAS  PubMed  Google Scholar 

  29. Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996;348:370–4.

    Article  CAS  PubMed  Google Scholar 

  30. Tsukahara H, Gordienko DV, Tonshoff B, Gelato MC, Goligorsky MS. Direct demonstration of insulin-like growth factor-I-induced nitric oxide production by endothelial cells. Kidney Int. 1994;45:598–604.

    Article  CAS  PubMed  Google Scholar 

  31. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  32. Schachinger V, Zeiher AM. Atherosclerosis—recent insight into basic mechanisms and their clinical impact. Nephrol Dial Trans. 2002;17:2055–64.

    Article  Google Scholar 

  33. Verma S, Buchanan MR, Anderson TJ. Endothelial function. Testing as a biomarker of vascular disease. Circulation. 2003;108:2054–9.

    Article  PubMed  Google Scholar 

  34. Burger PC, Wagner DD. Platelet P-selectin fascilitates atherosclerotic lesion development. Blood. 2003;101:2661–6.

    Article  CAS  PubMed  Google Scholar 

  35. Blann AD, Lip GYH. Hypothesis: is soluble P-selectin a new marker of platelet activation? Atherosclerosis. 1997;128:135–8.

    Article  CAS  PubMed  Google Scholar 

  36. Kobayashi S, Oka M, Moriya H, Maesato K, Okamoto K, Ohtake T. LDL-apheresis reduces P-selectin, CRP and fibrinogen— possible implications for improving atherosclerosis. Ther Apher Dial. 2006;10:219–23.

    Article  CAS  PubMed  Google Scholar 

  37. Matsuzaki M, Hiramori K, Imaizumi T, Kitabatake A, Hishida H, Nomura M, Fujii T. Intravenous ultrasound evaluation of coronary plaque regression by low density lipoprotein-apheresis in familial hypercholesterolemia. The low density lipoprotein-apheresis coronary morphology and reserve trial (LACMART). J Am Coll Cardiol. 2002;40:220–7.

    Article  PubMed  Google Scholar 

  38. Beer FC, Soutar AK, Baltz ML, Trayner IM, Feinstein A, Pepys MB: Low density lipoprotein and very low density protein are selectively bound by aggregated C-reactive protein. J Exp Med. 1982;230–42

  39. Utsumi K, Kawabe M, Hirayama A, Ueda K, Kamada Y, Aril K, Komaba Y, Katsura KI, Iino Y, Katayama Y. Effects of selective LDL apheresis on plasma concentration of ICAM-1, VCAM-1 and P-selectin in diabetic patients with arteriosclerosis obliterans and receiving maintenance hemodialysis. Clin Chim Acta 2006;Oct 6 (E-pub).

  40. Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, Ellis E, Lovell H, Warady B, Gunwar S, Chonko AM, Artero M, Vincenti F. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med. 1996;334:878–83.

    Article  CAS  PubMed  Google Scholar 

  41. Tojo K, Sakai S, Miyahara T. Possible therapeutic application of low density lipoprotein apheresis in conjunction with double filtration plasma pheresis in drug-resistant nephrotic syndrome due to focal glomerular sclerosis. Jpn J Nephrol. 1988;30:1153–60.

    CAS  Google Scholar 

  42. Yokoyama K, Sakai S, Yamamoto H, Tojo K, Tada N, Suzuki M, Sakai O. Therapeutic LDL apheresis in patients with drug-resistant nephrotic syndrome and severe glomerular nephritis with hyperlipidemia. In: Ohta et al. (ed) Plasmapheresis. Cleveland: ISAIO Press, 1990. Vol 9, p. 50–5.

  43. Yokoyama K, Sakai S, Yamaguchi Y, Suzuki Y, Hinoshita F, Hara S, Yamada A, Ogura Y, Kawaguchi Y, Sakai O. Complete remission of the nephrotic syndrome due to focal glomerular sclerosis achieved with LDL adosorption alone. Nephron. 1996;72:318–20.

    Article  CAS  PubMed  Google Scholar 

  44. Muso E, Yashiro M, Matsusia M, Yoshida H, Sawanishi K, Sasayama S. Does LDL-apheresis in steroid-resistant nephrotic syndrome affect prognosis? Nephrol Dial Trans. 1994;9:257–64.

    CAS  Google Scholar 

  45. Yokoyama K, Sakai S, Shigematsu T, Takemoto F, Hara S, Yamada A, Kawaguchi Y, Hosoya T. LDL adsorption improves the response of focal glomerulosclerosis to corticosteroid therapy. Clini Nephrol. 1998;50:1–7.

    CAS  Google Scholar 

  46. Muso E, Mune M, Fujii Y, Imai E, Ueda N, Hatta K, Imada A, Miki S, Kuwahara T, takamitsu Y, Takemura T, Tsubakihara Y, for the Kansai-FGS-Apheresis Treatment (K-FLAT) Stusy Group. Low density lipoprotein apheresis therapy for steroid-resistant nephrotic syndrome. Kidney Int. 1999;56:S122–5.

    Article  Google Scholar 

  47. Muso E, Mune M, Fujii Y, Imai E, Ueda N, Hatta K, Imada A, Miki S, Kuwahara T, takamitsu Y, Takemura T, Tsubakihara Y, for the Kansai-FGS-Apheresis Treatment (K-FLAT) Study Group. Significantly rapid relief from ateroid-resistant nephrotic syndrome by LDL apheresis compared with steroid monotherapy. Nephron 2001;89:408–15.

    Article  CAS  PubMed  Google Scholar 

  48. Hattori M, Chikamoto H, Akioka Y, Nakakura H, Ogino D, Matsunaga A, Hukazawa A, Miyakawa S, Khono M, Kawaguchi H, Ito K. A combined low-density lipoprotein apheresis and prednisone therapy for steroid-resistant primary focal segmental glomerulosclerosis in children. Am J Kidney Dis. 2003;42:1121–30.

    Article  PubMed  Google Scholar 

  49. Sakurai M, Muso E, Matsushita H, Ono T, Sasayama S. Rapid normalization of interleulin-8 production after low-density lipoprotein apheresis in steroid-resistant nephrotic syndrome. Kidney Int. 1999;56:S210–2.

    Article  Google Scholar 

  50. Nakao T, Yoshino M, Matsumoto H, Okada T, Han M, Hidaka H, Shino T, Yamada C, Nagaoka Y, Miyahara T. Low-density lipoprotein apheresis retards the progression of hyperlipidemic overt diabetic nephropathy. Kidney Int. 1999;71:S206–9.

    Article  CAS  Google Scholar 

  51. Nakamura T, Kawagoe Y, Ogawa H, Ueda Y, Hara M, Shimada N, Ebihara I, Koide H. Effect of low-density lipoprotein apheresis on urinary protein and podocyte excretion in patients with nephrotic syndrome due to diabetic nephropathy. Am J Kidney Dis. 2004;45:48–53.

    Article  Google Scholar 

  52. Pagtalunan ME, Miller PL, Jumping-Eagle S. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99:342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. White KE, Bjlous RW, Diabiopsies Study Group: Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients. Nephrol Dial Trans 2004;19:1437.

    Article  Google Scholar 

  54. Inoue I, Kikuchi C, Takahashi K, Katayama S. LDL apheresis reduces the susceptibility of LDL to in vitro oxidation in a diabetic patient with hemodialysis treatment. Diabetes Care 1996;1103–7.

  55. Petrichenko I, Daret D, Larrue J, Shakhov Y. Effect of VLDL on the inhibition of arachidonic acid transformation by dexamethasone in cultured smooth muscle cells. Biochem Biophys Acta. 1993;1166:183–7.

    Article  CAS  PubMed  Google Scholar 

  56. De Groen PC. Cyclosporine, low-density lipoprotein, and cholesterol. Mayo Clin Proc. 1988;63:1012–1021.

    Article  PubMed  Google Scholar 

  57. Fine MJ, Kapoor W, Falanga V. Cholesterol crystal embolization: a review of 221 cases in the English literature. Angiology. 1987;38:769–84.

    Article  CAS  PubMed  Google Scholar 

  58. Belenfant X, Meyrier A, Jacquot C. Supportive treatment improves survival in multivisceral cholesterol crystal embolism. Am J Kidney Dis. 1999;33:840.

    Article  CAS  PubMed  Google Scholar 

  59. Tsunoda S, Daimon S, Miyazaki R, Fujii H, Inazu A, Mabuchi H. LDL apheresis as intensive lipid-lowering therapy for cholesterol embolism. Nephrol Dial Transplant. 1999;14:1041–2.

    Article  CAS  PubMed  Google Scholar 

  60. Daimon S, Motita R, Ohtsuki N, Chiaki H, Jigen K, Koni I. LDL apheresis followed by corticosteroid therapy as a possible treatment of cholesterol crystal embolism. Clin Exp Nephrol. 2000;4:352–5.

    Article  Google Scholar 

  61. Iwahori T, Yoshida M. Low-density lipoprotein apheresis can improve type AA systemic amyloidosis. Nephron. 2000;86:248–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzo Kobayashi.

About this article

Cite this article

Kobayashi, S. Applications of LDL-apheresis in nephrology. Clin Exp Nephrol 12, 9–15 (2008). https://doi.org/10.1007/s10157-007-0003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-007-0003-8

Keywords

Navigation