Skip to main content
Log in

Sgβ1, a novel locust (Schistocerca gregaria) non-α nicotinic acetylcholine receptor-like subunit with homology to the Drosophila melanogaster Dβ1 subunit

  • Original Article
  • Published:
Invertebrate Neuroscience

Abstract

The cloning, sequencing and functional expression of Sgβ1, a novel locust (Schistocerca gregaria) non-α nicotinic acetylcholine receptor (nAChR) subunit is described. This subunit shows 80% identity with the Drosophila melanogaster Dβ1 and 92% identity with the Locusta migratoria β1, non-α subunits but only 38% identity to Sgα1 (also referred to as αL1), a previously cloned S. gregaria nAChR α-subunit. When expressed in Xenopus laevis oocytes, Sgβ1 does not respond to nicotine. Responses to nicotine are observed, however, in oocytes co-expressing Sgα1 and Sgβ1, but the pharmacology is indistinguishable from that of currents produced by expressing Sgα1 alone. We conclude that either Sgβ1 does not co-assemble with Sgα1, or that it is unable to contribute to the functional properties of the receptor, in the Xenopus oocyte expression system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ben-Ami HC, Yassin L, Farah H et al (2005) RIC-3 affects properties and quantity of nicotinic acetylcholine receptors via a mechanism that does not require the coiled-coil domains. J Biol Chem 280:28053–28060

    Article  PubMed  Google Scholar 

  • Chamaon K, Schulz R, Smalla KH, Seidel B, Gundelfinger ED (2000) Neuronal nicotinic acetylcholine receptors of Drosophila melanogaster: the alpha-subunit dalpha3 and the beta-type subunit ARD co-assemble within the same receptor complex. FEBS Lett 482:189–192

    Article  PubMed  Google Scholar 

  • Chamaon K, Smalla KH, Thomas U, Gundelfinger ED (2002) Nicotinic acetylcholine receptors of Drosophila: three subunits encoded by genomically linked genes can co-assemble into the same receptor complex. J Neurochem 80:149–157

    Article  PubMed  Google Scholar 

  • Chen D, Dang H, Patrick JW (1998) Contributions of N-linked glycosylation to the expression of a functional alpha7-nicotinic receptor in Xenopus oocytes. J Neurochem 70:349–357

    PubMed  Google Scholar 

  • Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458

    Article  PubMed  Google Scholar 

  • Courjaret R, Grolleau F, Lapied B (2003) Two distinct calcium-sensitive and -insensitive PKC up- and down-regulate an alpha-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons). Eur J Neurosci 17:2023–2034

    Article  PubMed  Google Scholar 

  • Drummond DR, Armstrong J, Colman A (1985) The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes. Nucleic Acids Res 13:7375–7394

    PubMed  Google Scholar 

  • Dyrlov Bendtsen J, Nielsen H, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Falquet L, Pagni M, Bucher P et al (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238

    Article  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Fenster CP, Beckman ML, Parker JC et al (1999) Regulation of alpha4beta2 nicotinic receptor desensitization by calcium and protein kinase C. Mol Pharmacol 55:432–443

    PubMed  Google Scholar 

  • Fitzgerald J, Kennedy D, Viseshakul N et al (2000) UNCL, the mammalian homologue of UNC-50, is an inner nuclear membrane RNA-binding protein. Brain Res 877:110–123

    Article  PubMed  Google Scholar 

  • Grauso M, Reenan RA, Culetto E, Sattelle DB (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160:1519–1533

    PubMed  Google Scholar 

  • Gubler U, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25:263–269

    Article  PubMed  Google Scholar 

  • Halevi S, Yassin L, Eshel M et al (2003) Conservation within the RIC-3 gene family. Effectors of mammalian nicotinic acetylcholine receptor expression. J Biol Chem 278:34411–34417

    Article  PubMed  Google Scholar 

  • Hanke W, Breer H (1986) Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature 321:171–174

    Article  PubMed  Google Scholar 

  • Hanke W, Breer H (1987) Characterization of the channel properties of a neuronal acetylcholine receptor reconstituted into planar lipid bilayers. J Gen Physiol 90:855–879

    Article  PubMed  Google Scholar 

  • Hanke W, Breer H (1989) Reconstitution of acetylcholine receptors into planar lipid bilayers. Subcell Biochem 14:339–362

    PubMed  Google Scholar 

  • Hoopengardner B, Bhalla T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832–836

    Google Scholar 

  • Huang Y, Williamson MS, Devonshire AL et al (2000) Cloning, heterologous expression and co-assembly of Mpbeta1, a nicotinic acetylcholine receptor subunit from the aphid Myzus persicae. Neurosci Lett 284:116–120

    Article  PubMed  Google Scholar 

  • Jones AK, Sattelle DB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26:39–49

    Article  Google Scholar 

  • Jones AK, Elgar G, Sattelle DB (2003) The nicotinic acetylcholine receptor gene family of the pufferfish, Fugu rubripes. Genomics 82:441–451

    Article  PubMed  Google Scholar 

  • Jones AK, Grauso M, Sattelle DB (2005) The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 85:176–187

    Article  Google Scholar 

  • Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114

    Article  PubMed  Google Scholar 

  • Lansdell SJ, Millar NS (2000) Cloning and heterologous expression of Dalpha4, a Drosophila neuronal nicotinic acetylcholine receptor subunit: identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacology 39:2604–2614

    Article  Google Scholar 

  • Liu Z, Williamson MS, Lansdell SJ et al (2005) A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA 102:8420–8425

    Article  Google Scholar 

  • Marshall J, Buckingham SD, Shingai R et al (1990) Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. Embo J 9:4391–4398

    PubMed  Google Scholar 

  • Matsuda K, Buckingham SD, Kleier D et al (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580

    Article  PubMed  Google Scholar 

  • Millar NS (2003) Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochem Soc Trans 31:869–874

    Article  PubMed  Google Scholar 

  • Nishizaki T (2003) N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance. Brain Res Mol Brain Res 114:172–176

    Article  PubMed  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Sattelle DB (1988) Synaptic and extrasynaptic neuronal nicotinic receptors of insects. In: Lunt GG (ed) The molecular basis of drug and pesticide action, Amsterdam Elsevier, pp 563–582

  • Sattelle DB, Jones AK, Sattelle BM et al (2005) Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. Bioessays 27:366–376

    Article  Google Scholar 

  • Sparks TC, Crouse GD, Durst G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Manag Sci 57:896–905

    Article  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  Google Scholar 

  • Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268

    Article  PubMed  Google Scholar 

  • Vermehren A, Trimmer BA (2005) Expression and function of two nicotinic subunits in insect neurons. J Neurobiol 62:289–298

    Article  PubMed  Google Scholar 

  • Wecker L, Guo X, Rycerz AM, Edwards SC (2001) Cyclic AMP-dependent protein kinase (PKA) and protein kinase C phosphorylate sites in the amino acid sequence corresponding to the M3/M4 cytoplasmic domain of alpha4 neuronal nicotinic receptor subunits. J Neurochem 76:711–720

    Article  PubMed  Google Scholar 

  • White MM, Mayne KM, Lester HA, Davidson N (1985) Mouse-torpedo hybrid acetylcholine receptors: functional homology does not equal sequence homology. Proc Natl Acad Sci USA 82:4852–4856

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Eric Barnard, Ann Stephenson, Leslie Blair, Vince Dionne, Jonathan David, Ed Levitan, Ryuzo Shingai, Anthony Kerlevagge, and Mike Goosey for helpful discussions during the course of this work. The financial support of the Medical Research Council, the Agricultural and Food Research Council and Shell Research Ltd., UK is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Sattelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, A.K., Marshall, J., Blake, A.D. et al. Sgβ1, a novel locust (Schistocerca gregaria) non-α nicotinic acetylcholine receptor-like subunit with homology to the Drosophila melanogaster Dβ1 subunit. Invert Neurosci 5, 147–155 (2005). https://doi.org/10.1007/s10158-005-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-005-0007-6

Keywords

Navigation