Skip to main content
Log in

The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

Members of the cys-loop ligand-gated ion channel (cys-loop LGIC) superfamily mediate neurotransmission in insects and are targets of successful insecticides. We have described the cys-loop LGIC superfamily of the honeybee, Apis mellifera, which is an important crop pollinator and a key model for social interaction. The honeybee superfamily consists of 21 genes, which is slightly smaller than that of Drosophila melanogaster comprising 23 genes. As with Drosophila, the honeybee possesses ion channels gated by acetylcholine, γ-amino butyric acid, glutamate and histamine as well as orthologs of the Drosophila pH-sensitive chloride channel (pHCl), CG8916, CG12344 and CG6927. Similar to Drosophila, honeybee cys-loop LGIC diversity is broadened by differential splicing which may also serve to generate species-specific receptor isoforms. These findings on Apis mellifera enhance our understanding of cys-loop LGIC functional genomics and provide a useful basis for the development of improved insecticides that spare a major beneficial insect species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Barbara GS, Zube C, Rybak J, Gauthier M, Grunewald B (2005) Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:823–836

    Article  PubMed  Google Scholar 

  • Beg AA, Jorgensen EM (2003) EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci 6:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Benner SA, Cohen MA, Gonnet GH (1994) Amino acid substitution during functionally constrained divergent evolution of protein sequences. Protein Eng 7:1323–1332

    Article  PubMed  CAS  Google Scholar 

  • Bicker G (1999) Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Tech 45:174–183

    Article  PubMed  CAS  Google Scholar 

  • Bicker G, Schafer S, Kingan TG (1985) Mushroom body feedback interneurones in the honeybee show GABA-like immunoreactivity. Brain Res 360:394–397

    Article  PubMed  CAS  Google Scholar 

  • Bicker G, Schafer S, Ottersen OP, Storm-Mathisen J (1988) Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J Neurosci 8:2108–2122

    PubMed  CAS  Google Scholar 

  • Bloomquist JR (2003) Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol 54:145–156

    Article  PubMed  CAS  Google Scholar 

  • Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21:16–19

    Article  PubMed  CAS  Google Scholar 

  • Bornhauser BC, Meyer EP (1997) Histamine-like immunoreactivity in the visual system and brain of an orthopteran and a hymenopteran insect. Cell Tissue Res 287:211–221

    Article  PubMed  CAS  Google Scholar 

  • Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB (2005) Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharmacol 68:942–951

    Article  PubMed  CAS  Google Scholar 

  • Buller AL, Hastings GA, Kirkness EF, Fraser CM (1994) Site-directed mutagenesis of N-linked glycosylation sites on the gamma-aminobutyric acid type A receptor alpha 1 subunit. Mol Pharmacol 46:858–865

    PubMed  CAS  Google Scholar 

  • Celie PH, Klaassen RV, van Rossum-Fikkert SE, van Elk R, van Nierop P, Smit AB, Sixma TK (2005) Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J Biol Chem 280:26457–26466

    Article  PubMed  CAS  Google Scholar 

  • Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458

    Article  PubMed  CAS  Google Scholar 

  • Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP (1996) Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem 271:20187–20191

    Article  PubMed  CAS  Google Scholar 

  • Dacher M, Lagarrigue A, Gauthier M (2005) Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics. Neuroscience 130:37–50

    Article  PubMed  CAS  Google Scholar 

  • Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delegue MH (2004) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf 57:410–419

    Article  PubMed  CAS  Google Scholar 

  • Dent JA (2006) Evidence for a diverse cys-loop ligand-gated ion channel superfamily in early bilateria. J Mol Evol 62:523–535

    Article  PubMed  CAS  Google Scholar 

  • Dingwall C, Laskey RA (1991) Nuclear targeting sequences—a consensus? Trends Biochem Sci 16:478–481

    Article  PubMed  CAS  Google Scholar 

  • Dyrlov Bendtsen J, Nielsen H, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  CAS  Google Scholar 

  • El Hassani AK, Dacher M, Gauthier M, Armengaud C (2005) Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav 82:30–39

    Article  PubMed  CAS  Google Scholar 

  • Ernst M, Brauchart D, Boresch S, Sieghart W (2003) Comparative modeling of GABA(A) receptors: limits, insights, future developments. Neuroscience 119:933–943

    Article  PubMed  CAS  Google Scholar 

  • Fayyazuddin A, Zaheer MA, Hiesinger PR, Bellen HJ (2006) The nicotinic acetylcholine receptor Dalpha7 is required for an escape behavior in Drosophila. PLoS Biol 4:e63

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • ffrench-Constant RH, Rocheleau TA (1993) Drosophila gamma-aminobutyric acid receptor gene Rdl shows extensive alternative splicing. J Neurochem 60:2323–2326

    Article  PubMed  CAS  Google Scholar 

  • Ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363:449–451

    Article  PubMed  CAS  Google Scholar 

  • Gauthier M, Dacher M, Thany SH, Niggebrugge C, Deglise P, Kljucevic P, Armengaud C, Grunewald B (2006) Involvement of alpha-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn Mem (in press)

  • Gengs C, Leung HT, Skingsley DR, Iovchev MI, Yin Z, Semenov EP, Burg MG, Hardie RC, Pak WL (2002) The target of Drosophila photoreceptor synaptic transmission is a histamine-gated chloride channel encoded by ort (hclA). J Biol Chem 277:42113–42120

    Article  PubMed  CAS  Google Scholar 

  • Gepner JI, Hall LM, Sattelle DB (1978) Insect acetylcholine receptors as a site of insecticide action. Nature 276:188–190

    Article  PubMed  CAS  Google Scholar 

  • Gisselmann G, Plonka J, Pusch H, Hatt H (2004) Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. Br J Pharmacol 142:409–413

    Article  PubMed  CAS  Google Scholar 

  • Gisselmann G, Pusch H, Hovemann BT, Hatt H (2002) Two cDNAs coding for histamine-gated ion channels in D. melanogaster. Nat Neurosci 5:11–12

    Article  PubMed  CAS  Google Scholar 

  • Grauso M, Reenan RA, Culetto E, Sattelle DB (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160:1519–1533

    PubMed  CAS  Google Scholar 

  • Griffon N, Buttner C, Nicke A, Kuhse J, Schmalzing G, Betz H (1999) Molecular determinants of glycine receptor subunit assembly. Embo J 18:4711–4721

    Article  PubMed  CAS  Google Scholar 

  • Grunewald B, Wersing A, Wustenberg DG (2004) Learning channels. Cellular physiology of odor processing neurons within the honeybee brain. Acta Biol Hung 55:53–63

    Article  PubMed  CAS  Google Scholar 

  • Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP (2001) Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 76:183–191

    Article  PubMed  CAS  Google Scholar 

  • Hamasaka Y, Nassel DR (2006) Mapping of serotonin, dopamine, and histamine in relation to different clock neurons in the brain of Drosophila. J Comp Neurol 494:314–330

    Article  PubMed  CAS  Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  PubMed  CAS  Google Scholar 

  • Hoopengardner B, Bhalla T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832–836

    Article  PubMed  CAS  Google Scholar 

  • Hosie AM, Aronstein K, Sattelle DB, ffrench-Constant RH (1997) Molecular biology of insect neuronal GABA receptors. Trends Neurosci 20:578–583

    Article  PubMed  CAS  Google Scholar 

  • Hosie AM, Buckingham SD, Presnail JK, Sattelle DB (2001) Alternative splicing of a Drosophila GABA receptor subunit gene identifies determinants of agonist potency. Neuroscience 102:709–714

    Article  PubMed  CAS  Google Scholar 

  • Hosler JS, Buxton KL, Smith BH (2000) Impairment of olfactory discrimination by blockade of GABA and nitric oxide activity in the honey bee antennal lobes. Behav Neurosci 114:514–525

    Article  PubMed  CAS  Google Scholar 

  • Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux PS, Pagni M, Sigrist CJ (2006) The PROSITE database. Nucleic Acids Res 34:D227–230

    Article  PubMed  CAS  Google Scholar 

  • Humbert JP, Matter N, Artault JC, Koppler P, Malviya AN (1996) Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes. J Biol Chem 271:478–485

    Article  PubMed  CAS  Google Scholar 

  • Iovchev M, Boutanaev A, Ivanov I, Wolstenholme A, Nurminsky D, Semenov E (2006) Phylogenetic shadowing of a histamine-gated chloride channel involved in insect vision. Insect Biochem Mol Biol 36:10–17

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Grauso M, Sattelle DB (2005) The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 85:176–187

    Article  PubMed  CAS  Google Scholar 

  • Jones AK, Raymond-Delpech V, Thany SH, Gauthier M, Sattelle DB (2006) The nicotinic acetylcholine receptor gene family of the honeybee, Apis mellifera. Gen Res (in press)

  • Keramidas A, Moorhouse AJ, Schofield PR, Barry PH (2004) Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog Biophys Mol Biol 86:161–204

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov FA, Koonin EV (2001) Origin of alternative splicing by tandem exon duplication. Hum Mol Genet 10:2661–2669

    Article  PubMed  CAS  Google Scholar 

  • Lambin M, Armengaud C, Raymond S, Gauthier M (2001) Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch Insect Biochem Physiol 48:129–134

    Article  PubMed  CAS  Google Scholar 

  • Lansdell SJ, Millar NS (2000) Cloning and heterologous expression of Dalpha4, a Drosophila neuronal nicotinic acetylcholine receptor subunit: identification of an alternative exon influencing the efficiency of subunit assembly. Neuropharmacology 39:2604–2614

    Article  PubMed  CAS  Google Scholar 

  • Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci 58:760–793

    Article  PubMed  CAS  Google Scholar 

  • Lozano VC, Armengaud C, Gauthier M (2001) Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J Comp Physiol A 187:249–254

    Article  PubMed  CAS  Google Scholar 

  • Lozano VC, Bonnard E, Gauthier M, Richard D (1996) Mecamylamine-induced impairment of acquisition and retrieval of olfactory conditioning in the honeybee. Behav Brain Res 81:215–222

    Article  PubMed  CAS  Google Scholar 

  • Marius P, Guerra MT, Nathanson MH, Ehrlich BE, Leite MF (2006) Calcium release from ryanodine receptors in the nucleoplasmic reticulum. Cell Calcium 39:65–73

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB (2001) Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 22:573–580

    Article  PubMed  CAS  Google Scholar 

  • Nishizaki T (2003) N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance. Brain Res Mol Brain Res 114:172–176

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Ranganathan R, Cannon SC, Horvitz HR (2000) MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408:470–475

    Article  PubMed  CAS  Google Scholar 

  • Raymond-Delpech V, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB (2005) Ion channels: molecular targets of neuroactive insecticides. Invert Neurosci 5:119–133

    Article  PubMed  CAS  Google Scholar 

  • Reeves DC, Lummis SC (2002) The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel (review). Mol Membr Biol 19:11–26

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC (2005) Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. Bioessays 27:366–376

    Article  PubMed  CAS  Google Scholar 

  • Schnizler K, Saeger B, Pfeffer C, Gerbaulet A, Ebbinghaus-Kintscher U, Methfessel C, Franken EM, Raming K, Wetzel CH, Saras A, Pusch H, Hatt H, Gisselmann G (2005) A novel chloride channel in Drosophila melanogaster is inhibited by protons. J Biol Chem 280:16254–16262

    Article  PubMed  CAS  Google Scholar 

  • Seeburg PH (2002) A-to-I editing: new and old sites, functions and speculations. Neuron 35:17–20

    Article  PubMed  CAS  Google Scholar 

  • Semenov EP, Pak WL (1999) Diversification of Drosophila chloride channel gene by multiple posttranscriptional mRNA modifications. J Neurochem 72:66–72

    Article  PubMed  CAS  Google Scholar 

  • Shimomura M, Yokota M, Matsuda K, Sattelle DB, Komai K (2004) Roles of loop C and the loop B–C interval of the nicotinic receptor alpha subunit in its selective interactions with imidacloprid in insects. Neurosci Lett 363: 195–198

    Article  PubMed  CAS  Google Scholar 

  • Sine SM, Engel AG (2006) Recent advances in Cys-loop receptor structure and function. Nature 440: 448–455

    Article  PubMed  CAS  Google Scholar 

  • Smart TG (1997) Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr Opin Neurobiol 7: 358–367

    Article  PubMed  CAS  Google Scholar 

  • Smit AB, Brejc K, Syed N, Sixma TK (2003) Structure and function of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Ann N Y Acad Sci 998:81–92

    Article  PubMed  CAS  Google Scholar 

  • Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74

    Article  PubMed  CAS  Google Scholar 

  • Suh KS, Mutoh M, Nagashima K, Fernandez-Salas E, Edwards LE, Hayes DD, Crutchley JM, Marin KG, Dumont RA, Levy JM, Cheng C, Garfield S, Yuspa SH (2004) The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J Biol Chem 279:4632–4641

    Article  PubMed  CAS  Google Scholar 

  • Swensen AM, Golowasch J, Christie AE, Coleman MJ, Nusbaum MP, Marder E (2000) GABA and responses to GABA in the stomatogastric ganglion of the crab Cancer borealis. J Exp Biol 203:2075–2092

    PubMed  CAS  Google Scholar 

  • Thany SH, Crozatier M, Raymond-Delpech V, Gauthier M, Lenaers G (2005) Apisalpha2, Apisalpha7–1 and Apisalpha7–2: three new neuronal nicotinic acetylcholine receptor alpha-subunits in the honeybee brain. Gene 344:125–132

    Article  PubMed  CAS  Google Scholar 

  • Thany SH, Gauthier M (2005) Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res 1039:216–219

    Article  PubMed  CAS  Google Scholar 

  • Thany SH, Lenaers G, Crozatier M, Armengaud C, Gauthier M (2003) Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. Insect Mol Biol 12:255–262

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2001) Structure and diversity of insect nicotinic acetylcholine receptors. Pest Manag Sci 57:914–922

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol 45:247–268

    Article  PubMed  CAS  Google Scholar 

  • Vassilatis DK, Elliston KO, Paress PS, Hamelin M, Arena JP, Schaeffer JM, Van der Ploeg LH, Cully DF (1997) Evolutionary relationship of the ligand-gated ion channels and the avermectin-sensitive, glutamate-gated chloride channels. J Mol Evol 44:501–508

    Article  PubMed  CAS  Google Scholar 

  • The Honey Bee Genome Sequencing Consortium (2006) The genome of a highly social species, the honey bee Apis mellifera. Nature (in press)

  • Zhang W, Han XY, Wong SM, Takeuchi H (1997) Pharmacologic characteristics of excitatory gamma-amino-butyric acid (GABA) receptors in a snail neuron. Gen Pharmacol 28:45–53

    PubMed  CAS  Google Scholar 

  • Zheng Y, Hirschberg B, Yuan J, Wang AP, Hunt DC, Ludmerer SW, Schmatz DM, Cully DF (2002) Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J Biol Chem 277:2000–2005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to the A. mellifera Genome Project (Human Genome Sequencing Center at Baylor College of Medicine) which provided the starting point for this study. We wish to thank Valerie Raymond-Delpech for providing adult honeybees. The financial support of the Medical Research Council and Dupont is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. Jones.

Additional information

Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. DQ667181–DQ667195.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, A.K., Sattelle, D.B. The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera . Invert Neurosci 6, 123–132 (2006). https://doi.org/10.1007/s10158-006-0026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-006-0026-y

Keywords

Navigation