Skip to main content

Advertisement

Log in

Directional Asymmetries and Age Effects in Human Self-Motion Perception

  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Directional asymmetries in vestibular reflexes have aided the diagnosis of vestibular lesions; however, potential asymmetries in vestibular perception have not been well defined. This investigation sought to measure potential asymmetries in human vestibular perception. Vestibular perception thresholds were measured in 24 healthy human subjects between the ages of 21 and 68 years. Stimuli consisted of a single cycle of sinusoidal acceleration in a single direction lasting 1 or 2 s (1 or 0.5 Hz), delivered in sway (left–right), surge (forward–backward), heave (up–down), or yaw rotation. Subject identified self-motion directions were analyzed using a forced choice technique, which permitted thresholds to be independently determined for each direction. Non-motion stimuli were presented to measure possible response bias. A significant directional asymmetry in the dynamic response occurred in 27% of conditions tested within subjects, and in at least one type of motion in 92% of subjects. Directional asymmetries were usually consistent when retested in the same subject but did not occur consistently in one direction across the population with the exception of heave at 0.5 Hz. Responses during null stimuli presentation suggested that asymmetries were not due to biased guessing. Multiple models were applied and compared to determine if sensitivities were direction specific. Using Akaike information criterion, it was found that the model with direction specific sensitivities better described the data in 86% of runs when compared with a model that used the same sensitivity for both directions. Mean thresholds for yaw were 1.3 ± 0.9°/s at 0.5 Hz and 0.9 ± 0.7°/s at 1 Hz and were independent of age. Thresholds for surge and sway were 1.7 ± 0.8 cm/s at 0.5 Hz and 0.7 ± 0.3 cm/s at 1.0 Hz for subjects <50 and were significantly higher in subjects >50 years old. Heave thresholds were higher and were independent of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  • Agrawal Y, Carey JP, Della Santina CC, Schubert MC, Minor LB (2009) Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001–2004. Arch Intern Med 169:938–944

    Article  PubMed  Google Scholar 

  • Akaike H (1992) Data analysis by statistical models. No To Hattatsu 24:127–133

    PubMed  CAS  Google Scholar 

  • Baloh RW, Honrubia V, Konrad HR (1977) Ewald’s second law re-evaluated. Acta Otolaryngol 83:475–479

    Article  PubMed  CAS  Google Scholar 

  • Baloh RW, Jacobson KM, Socotch TM (1993) The effect of aging on visual-vestibuloocular responses. Exp Brain Res 95:509–516

    Article  PubMed  CAS  Google Scholar 

  • Bárány R (1921) Diagnose von Krankheitserscheinungen im Bereiche des Otolithenapparates. Acta Otolaryngol:434-437

  • Becker GD (1979) The screening value of monothermal caloric tests. Laryngoscope 89:311–314

    PubMed  CAS  Google Scholar 

  • Benson AJ, Brown SF (1989) Visual display lowers detection threshold of angular, but not linear, whole-body motion stimuli. Aviat Space Environ Med 60:629–633

    PubMed  CAS  Google Scholar 

  • Benson AJ, Spencer MB, Stott JR (1986) Thresholds for the detection of the direction of whole-body, linear movement in the horizontal plane. Aviat Space Environ Med 57:1088–1096

    PubMed  CAS  Google Scholar 

  • Benson AJ, Hutt EC, Brown SF (1989) Thresholds for the perception of whole body angular movement about a vertical axis. Aviat Space Environ Med 60:205–213

    PubMed  CAS  Google Scholar 

  • Burkhardt DA, Gottesman J, Kersten D, Legge GE (1984) Symmetry and constancy in the perception of negative and positive luminance contrast. J Opt Soc Am A 1:309–316

    Article  PubMed  CAS  Google Scholar 

  • Clark B (1967) Thresholds for the perception of angular acceleration in man. Aero Med 38:443–450

    CAS  Google Scholar 

  • Coleman TF, Li Y (1994) On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math Program 67:189–224

    Article  Google Scholar 

  • Coleman TF, Li Y (1996) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6:418–445

    Article  Google Scholar 

  • Crane BT, Demer JL (1998) Human horizontal vestibulo-ocular reflex initiation: effects of acceleration, target distance, and unilateral deafferentation. J Neurophysiol 80:1151–1166

    PubMed  CAS  Google Scholar 

  • Crane BT, Tian J, Wiest G, Demer JL (2003) Initiation of the human heave linear vestibulo-ocular reflex. Exp Brain Res 148:247–255

    PubMed  Google Scholar 

  • Demer JL, Crane BT, Tian JR, Wiest G (2001) New tests of vestibular function. Ann N Y Acad Sci 942:428–445

    Article  PubMed  CAS  Google Scholar 

  • Engstrom H, Bergstrom B, Rosenhall U (1974) Vestibular sensory epithelia. Arch Otolaryngol 100:411–418

    Article  PubMed  CAS  Google Scholar 

  • Ewald EJR (1892) Physiologische untersuchungen über das endorgan des nervs octavus. Bergmann, Wiesbaden

    Google Scholar 

  • Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984

    PubMed  CAS  Google Scholar 

  • Fetsch CR, Turner AH, Deangelis GC, Angelaki DE (2009) Dynamic re-weighting of visual and vestibular cues during self-motion perception. J Neurosci 29:15601–15612

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Perez MA, Alcala-Quintana R (2009) Fixed vs. variable noise in 2AFC contrast discrimination: lessons from psychometric functions. Spat Vis 22:273–300

    Article  PubMed  Google Scholar 

  • Gianna C, Heimbrand S, Gresty M (1996) Thresholds for detection of motion direction during passive lateral whole-body acceleration in normal subjects and patients with bilateral loss of labyrinthine function. Brain Res Bull 40:443–447, discussion 448–449

    Article  PubMed  CAS  Google Scholar 

  • Grabherr L, Nicoucar K, Mast FW, Merfeld DM (2008) Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency. Exp Brain Res 186:677–681

    Article  PubMed  Google Scholar 

  • Gu Y, Watkins PV, Angelaki DE, DeAngelis GC (2006) Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area. J Neurosci 26:73–85

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Angelaki DE, Deangelis GC (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Gundry AJ (1978) Thresholds of perception for periodic linear motion. Aviat Space Environ Med 49:679–686

    PubMed  CAS  Google Scholar 

  • Halmagyi GM, Curthoys IS (1988) A clinical sign of canal paresis. Arch Neurol 45:737–739

    Article  PubMed  CAS  Google Scholar 

  • Jacobson GP, Means ED (1985) Efficacy of a monothermal warm water caloric screening test. Ann Otol Rhinol Laryngol 94:377–381

    PubMed  CAS  Google Scholar 

  • Kanayama R, Bronstein AM, Gresty MA, Brookes GB, Faldon ME, Nakamura T (1995) Perceptual studies in patients with vestibular neurectomy. Acta Otolaryngol Suppl 520(Pt 2):408–411

    Article  PubMed  Google Scholar 

  • Katsarkas A, Galiana HL, Smith HL (1995) Vestibulo-ocular reflex (VOR) biases in normal subjects and patients with compensated vestibular loss. Acta Otolaryngol 115:476–483

    Article  PubMed  CAS  Google Scholar 

  • Kingma H (2005) Thresholds for perception of direction of linear acceleration as a possible evaluation of the otolith function. BMC Ear Nose Throat Disord 5:5

    Google Scholar 

  • Kingma H (2006) Function tests of the otolith or statolith system. Curr Opin Neurol 19:21–25

    Article  PubMed  Google Scholar 

  • Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27:712–719

    Article  PubMed  CAS  Google Scholar 

  • Leek MR (2001) Adaptive procedures in psychophysical research. Percept Psychophys 63:1279–1292

    Article  PubMed  CAS  Google Scholar 

  • Lempert T, Gianna C, Brookes G, Bronstein A, Gresty M (1998) Horizontal otolith-ocular responses in humans after unilateral vestibular deafferentation. Exp Brain Res 118:533–540

    Article  PubMed  CAS  Google Scholar 

  • Liaw MY, Chen CL, Pei YC, Leong CP, Lau YC (2009) Comparison of the static and dynamic balance performance in young, middle-aged, and elderly healthy people. Chang Gung Med J 32:297–304

    PubMed  Google Scholar 

  • Lopez I, Honrubia V, Baloh RW (1997) Aging and the human vestibular nucleus. J Vestib Res 7:77–85

    Article  PubMed  CAS  Google Scholar 

  • Macmillan NA, Creelman CD (2005) Detection theory: a user’s guide, 2nd edn. Psychology Press, East Sussex

    Google Scholar 

  • MacNeilage PR, Banks MS, DeAngelis GC, Angelaki DE (2010) Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates. J Neurosci 30:9084–9094

    PubMed  CAS  Google Scholar 

  • Mallery RM, Olomu OU, Uchanski RM, Militchin VA, Hullar TE (2010) Human discrimination of rotational velocities. Exp Brain Res 204:11–20

    Article  PubMed  Google Scholar 

  • Melvill Jones GM, Young LR (1978) Subjective detection of vertical acceleration: a velocity-dependent response? Acta Otolaryngol 85:45–53

    Article  Google Scholar 

  • Merfeld DM (2011) Signal detection theory and vestibular thresholds: I. Basic theory and practical considerations. Exp Brain Res 210:389–405

    Google Scholar 

  • Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S (2005a) Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined Tilt&Translation. J Neurophysiol 94:199–205

    Article  PubMed  Google Scholar 

  • Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S (2005b) Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during Translation and Tilt. J Neurophysiol 94:186–198

    Article  PubMed  Google Scholar 

  • Nguyen KD, Welgampola MS, Carey JP (2010) Test–retest reliability and age-related characteristics of the ocular and cervical vestibular evoked myogenic potential tests. Otol Neurotol 31:793–802

    Article  PubMed  Google Scholar 

  • Perez N, Martin E, Garcia-Tapia R (2003) Dizziness: relating the severity of vertigo to the degree of handicap by measuring vestibular impairment. Otolaryngol Head Neck Surg 128:372–381

    Article  PubMed  Google Scholar 

  • Rauch SD, Velazquez-Villasenor L, Dimitri PS, Merchant SN (2001) Decreasing hair cell counts in aging humans. Ann N Y Acad Sci 942:220–227

    Article  PubMed  CAS  Google Scholar 

  • Rosenhall U (1972) Vestibular macular mapping in man. Ann Otol Rhinol Laryngol 81:339–351

    PubMed  CAS  Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Soyka F, Robuffo Giordano P, Beykirch K, Bulthoff HH (2011) Predicting direction detection thresholds for arbitrary translational acceleration profiles in the horizontal plane. Exp Brain Res 209:95–107

    Article  PubMed  Google Scholar 

  • Stefansson S, Imoto T (1986) Age-related changes in optokinetic and rotational tests. Am J Otol 7:193–196

    PubMed  CAS  Google Scholar 

  • Tian JR, Shubayev I, Baloh RW, Demer JL (2001) Impairments in the initial horizontal vestibulo-ocular reflex of older humans. Exp Brain Res 137:309–322

    Article  PubMed  CAS  Google Scholar 

  • Tian JR, Crane BT, Wiest G, Demer JL (2002) Effect of aging on the human initial interaural linear vestibulo-ocular reflex. Exp Brain Res 145:142–149

    Article  PubMed  Google Scholar 

  • Treutwein B (1995) Adaptive psychophysical procedures. Vision Res 35:2503–2522

    PubMed  CAS  Google Scholar 

  • Viciana D, Ferrer J, Palma MJ, Zapata C, Lopez-Escamez JA (2010) Dynamic visual acuity during head-thrust test in canal planes in healthy subjects and patients with vestibular neuritis. Acta Otolaryngol 130:1260–1266

    Article  PubMed  Google Scholar 

  • Wackermann J, Spati J (2006) Asymmetry of the discrimination function for temporal durations in human subjects. Acta Neurobiol Exp (Wars) 66:245–254

    Google Scholar 

  • Walsh EG (1961) Role of the vestibular apparatus in the perception of motion on a parallel swing. J Physiol 155:506–513

    PubMed  CAS  Google Scholar 

  • Welgampola MS, Colebatch JG (2005) Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurology 64:1682–1688

    Article  PubMed  Google Scholar 

  • Wichmann FA, Hill NJ (2001a) The psychometric function: II. Bootstrap-based confidence intervals and sampling. Percept Psychophys 63:1314–1329

    Article  PubMed  CAS  Google Scholar 

  • Wichmann FA, Hill NJ (2001b) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a clinician-scientist grant from the American Otological Society and NIDCD K23 DC011298-01. We would also like to thank Justin Y. Chan for technical support and Greg deAngelis for his insight that was useful in designing these experiments and for reviewing a pre-publication version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin T. Crane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roditi, R.E., Crane, B.T. Directional Asymmetries and Age Effects in Human Self-Motion Perception. JARO 13, 381–401 (2012). https://doi.org/10.1007/s10162-012-0318-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-012-0318-3

Keywords

Navigation