Skip to main content

Advertisement

Log in

Growing skin: tissue expansion in pediatric forehead reconstruction

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Tissue expansion is a common surgical procedure to grow extra skin through controlled mechanical over-stretch. It creates skin that matches the color, texture, and thickness of the surrounding tissue, while minimizing scars and risk of rejection. Despite intense research in tissue expansion and skin growth, there is a clear knowledge gap between heuristic observation and mechanistic understanding of the key phenomena that drive the growth process. Here, we show that a continuum mechanics approach, embedded in a custom-designed finite element model, informed by medical imaging, provides valuable insight into the biomechanics of skin growth. In particular, we model skin growth using the concept of an incompatible growth configuration. We characterize its evolution in time using a second-order growth tensor parameterized in terms of a scalar-valued internal variable, the in-plane area growth. When stretched beyond the physiological level, new skin is created, and the in-plane area growth increases. For the first time, we simulate tissue expansion on a patient-specific geometric model, and predict stress, strain, and area gain at three expanded locations in a pediatric skull: in the scalp, in the forehead, and in the cheek. Our results may help the surgeon to prevent tissue over-stretch and make informed decisions about expander geometry, size, placement, and inflation. We anticipate our study to open new avenues in reconstructive surgery and enhance treatment for patients with birth defects, burn injuries, or breast tumor removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agache PG, Monneur C, Leveque JL, DeRigal J (1980) Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res 269: 221–232

    Article  Google Scholar 

  • Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Dumais J, Goriely A, Holzapfel GA, Humphrey JD, Kemkemer R, Kuhl E, Olberding JE, Taber LA, Garikipati K (2011) on biological growth and remodeling. J Mech Phys Solids 59: 863–883

    Article  MathSciNet  Google Scholar 

  • Argenta LC, Watanabe MJ, Grabb WC (1983) The use of tissue expansion in head and neck reconstruction. Ann Plast Surg 11: 31–37

    Article  Google Scholar 

  • Arneja JS, Gosain AK (2005) Giant congenital melanocytic nevi of the trunk and an algorithm for treatment. J Craniofac Surg 16: 886–893

    Article  Google Scholar 

  • Arneja JS, Gosain AK (2007) Giant congenital melanocytic nevi. Plast Reconstr Surg 120: 26e–40e

    Article  Google Scholar 

  • Barone FE, Perry L, Keller T, Maxwell GP (1992) The biomechanical and histopathologic effect of surface texturing with silicone and polyurethane in tissue implantation and expansion. Plast Reconstr Surg 90: 77–86

    Article  Google Scholar 

  • Bernardini F, Mittleman J, Rushmeiner H, Silva C, Taubin G (1999) The ball-pivoting algorithm for surface reconstruction. IEEE Trans Vis Comp Graph 5: 349–359

    Article  Google Scholar 

  • Buganza Tepole A, Ploch CJ, Wong J, Gosain AK, Kuhl E (2011) Growing skin—a computational model for skin expansion in reconstructive surgery. J Mech Phys Solids 59: 2177–2190

    Article  MathSciNet  Google Scholar 

  • Buganza Tepole A, Gosain AK, Kuhl E (2012) Stretching skin: the physiological limit and beyond. Int J Non-linear Mech. doi:10.1016/j.ijnonlinmec.2011.07.006

  • Castilla EE, daGraca Dutra M, Orioli-Parreiras IM (1981) Epidermiology of congenital pigmented naevi: I. Incidence rates and relative frequencies. Br J Dermatol 104: 307–315

    Article  Google Scholar 

  • De Filippo RE, Atala A (2002) Stretch and growth: the molecular and physiologic influences of tissue expansion. Plast Reconstr Surg 109: 2450–2462

    Article  Google Scholar 

  • Dervaux J, Ciarletta P, Ben Amar M (2009) Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the Föppl-von Karman limit. J Mech Phys Solids 57: 458–471

    Article  MathSciNet  MATH  Google Scholar 

  • Duits EHA, Molenaar J, van Rappard JHA (1989) The modeling of skin expanders. Plast Reconstr Surg 83: 362–367

    Article  Google Scholar 

  • Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16: 951–978

    Article  MATH  Google Scholar 

  • Garikipati K (2009) The kinematics of biological growth. Appl Mech Rev 62: 0308011–0308017

    Article  Google Scholar 

  • Göktepe S, Abilez OJ, Parker KK, Kuhl E (2010) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol 265: 433–442

    Article  Google Scholar 

  • Göktepe S, Abilez OJ, Kuhl E (2010) A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J Mech Phys Solids 58: 1661–1680

    Article  MathSciNet  MATH  Google Scholar 

  • Goriely A, BenAmar M (2005) Differential growth and instability in elastic shells. Phys Rev Lett 94: 198103

    Article  Google Scholar 

  • Goriely A, BenAmar M (2007) On the definition and modeling of incremental, cumulative, and continuous growth laws in morphoelasticity. Biomech Model Mechanobiol 6: 289–296

    Article  Google Scholar 

  • Gosain AK, Santoro TD, Larson DL, Gingrass RP (2001) Giant congenital nevi: a 20-year experience and an algorithm for their management. Plast Reconstr Surg 108: 622–636

    Article  Google Scholar 

  • Gosain AK, Zochowski CG, Cortes W (2009) Refinements of tissue expansion for pediatric forehead reconstruction: a 13-year experience. Plast Reconstr Surg 124: 1559–1570

    Article  Google Scholar 

  • Himpel G, Kuhl E, Menzel A, Steinmann P (2005) Computational modeling of isotropic multiplicative growth. Comp Mod Eng Sci 8: 119–134

    MATH  Google Scholar 

  • Kaplan EN (1974) The risk of malignancy in large congenital nevi. Plast Reconstr Surg 53: 421–428

    Article  Google Scholar 

  • Kobbelt LP, Vorsatz J, Labsik U, Seidel HP (1999) A shrink wrapping approach to remeshing polygonal surfaces. Comp Graph Forum 18: 119–130

    Article  Google Scholar 

  • Kroon W, Delhaas T, Arts T, Bovendeerd P (2009) Computational modeling of volumetric soft tissue growth: Application to the cardiac left ventricle. Biomech Model Mechanobiol 8: 301–309

    Article  Google Scholar 

  • Kuhl E, Steinmann P (2003a) Mass- and volume specific views on thermodynamics for open systems. Proc Royal Soc 459: 2547–2568

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhl E, Steinmann P (2003b) On spatial and material settings of thermohyperelstodynamics for open systems. Acta Mech 160: 179–217

    Article  MATH  Google Scholar 

  • Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth - A critical review, a classification of concepts and two new consistent approaches. Comp Mech 32: 71–88

    Article  MATH  Google Scholar 

  • Kuhl E, Steinmann P (2004) Computational modeling of healing—an application of the material force method. Biomech Model Mechanobiol 2: 187–203

    Article  Google Scholar 

  • Kuhl E, Garikipati K, Arruda EM, Grosh K (2005) Remodeling of biological tissue: mechanically induced reorientation of a transversely isotropic chain network. J Mech Phys Solids 53: 1552–1573

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhl E, Menzel A, Garikipati K (2006) On the convexity of transversely isotropic chain network models. Philos Mag 86: 3241–3258

    Article  Google Scholar 

  • Kuhl E, Maas R, Himpel G, Menzel A (2007) Computational modeling of arterial wall growth: attempts towards patient-specific simulations based on computer tomography. Biomech Model Mechanobiol 6: 321–331

    Article  Google Scholar 

  • Kuhl E, Holzapfel GA (2007) A continuum model for remodeling in living structures. J Mater Sci 2: 8811–8823

    Article  Google Scholar 

  • Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36: 1–6

    Article  MATH  Google Scholar 

  • Levi K, Kwan A, Rhines AS, Gorcea M, Moore DJ, Dauskardt RH (2010) Emollient molecule effects on the drying stresses in human stratum corneum. Br J Dermatol 163: 695–703

    Article  Google Scholar 

  • LoGiudice J, Gosain AK (2003) Pediatric tissue expansion: indications and complications. J Craniofac Surg 14: 866–872

    Article  Google Scholar 

  • Lubarda VA, Hoger A (2002) On the mechanics of solids with a growing mass. Int J Solids & Structures 39: 4627–4664

    Article  MATH  Google Scholar 

  • Lubarda VA (2004) Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity and biomechanics. Appl Mech Rev 57: 95–108

    Article  Google Scholar 

  • Mazza E, Papes O, Rubin MB, Bodner SR, Binur NS (2005) Nonlinear elastic-viscoplastic constitutive equations for aging facial tissues. Biomech Model Mechanobiol 4: 178–189

    Article  Google Scholar 

  • McMahon J, Goriely A (2010) Spontaneous cavitation in growing elastic membranes. Math Mech Solids 15: 57–77

    Article  MathSciNet  MATH  Google Scholar 

  • Menzel A (2005) Modelling of anisotropic growth in biological tissues—a new approach and computational aspects. Biomech Model Mechanobiol 3: 147–171

    Article  Google Scholar 

  • Menzel A (2007) A fibre reorientation model for orthotropic multiplicative growth. Biomech Model Mechanobiol 6: 303–320

    Article  Google Scholar 

  • Neumann CG (1959) The expansion of an area of skin by progressive distension of a subcutaneous balloon; use of the method for securing skin for subtotal reconstruction of the ear. Plast Reconstr Surg 19: 124–130

    Article  Google Scholar 

  • Pang H, Shiwalkar AP, Madormo CM, Taylor RE, Andriacchi TP, Kuhl E (2012) Computational modeling of bone density profiles in response to gait: a subject-specific approach. Biomech Model Mechanobiol. doi:10.1007/s10237-011-0318-y

  • Quaba AA, Wallace AF (1986) The incidence of malignant melanoma (0 to 15 years of age) arising in large congenital nevocellular nevi. Plast Reconstr Surg 78: 174–178

    Article  Google Scholar 

  • Radovan C (1982) Breast reconstruction after mastectomy using the temporary expander. Plast Reconstr Surg 69: 195–208

    Article  Google Scholar 

  • Rausch MK, Bothe W, Kvitting JP, Göktepe S, Miller DC, Kuhl E (2011a) In vivo dynamic strains of the ovine anterior mitral valve leaflet. J Biomech 44: 1149–1157

    Article  Google Scholar 

  • Rausch MK, Dam A, Göktepe S, Abilez OJ, Kuhl E (2011b) Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomech Model Mechanobiol. doi:10.1007/s10237-010-0275-x

  • Rivera R, LoGiudice J, Gosain AK (2005) Tissue expansion in pediatric patients. Clin Plast Surg 32: 35–44

    Article  Google Scholar 

  • Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27: 455–467

    Article  Google Scholar 

  • Schmid H, Pauli L, Paulus A, Kuhl E, Itskov M (2011) How to utilise the kinematic constraint of incompressibility for modelling adaptation of soft tissues.Comp Meth Biomech Biomed Eng. doi:10.1080/10255842.2010.548325

  • Serup J, Jemec GBE, Grove GL (2003) Handbook of Non-Invasive Methods and the Skin. Informa Healthcare

  • Shively RE (1986) Skin expander volume estimator. Plast Reconstr Surg 77: 482–483

    Article  Google Scholar 

  • Silver FH, Siperko LM, Seehra GP (2003) Mechanobiology of force transduction in dermal tissue. Skin Res Tech 9: 3–23

    Article  Google Scholar 

  • Socci L, Pennati G, Gervaso F, Vena P (2007) An axisymmetric computational model of skin expansion and growth. Biomech Model Mechanobiol 6: 177–188

    Article  Google Scholar 

  • Taber LA (1995) Biomechanics of growth, remodeling and morphogenesis. Appl Mech Rev 48: 487–545

    Article  Google Scholar 

  • Takei T, Mills I, Arai K, Sumpio BE (1998) Molecular basis for tissue expansion: clinical implications for the surgeon. Plast Reconstr Surg 102: 247–258

    Article  Google Scholar 

  • Taylor RL (2011) FEAP - A Finite Element Analysis Program. Version 8.3, User Manual, University of California at Berkeley

  • van der Kolk CA, McCann JJ, Knight KR, O’Brien BM (1987) Some further characteristics of expanded tissue. Clin Plast Surg 14: 447–453

    Google Scholar 

  • van Rappard JHA, Molenaar J, van Doorn K, Sonneveld GJ, Borghouts JMHM (1988) Surface-area increase in tissue expansion. Plast Reconstr Surg 82: 833–839

    Article  Google Scholar 

  • Wollina U, Berger U, Stolle C, Stolle H, Schubert H, Zieger M, Hipler C, Schumann D (1992) Tissue expansion in pig skin—a histochemical approach. Anat Histol Embryol 21: 101–111

    Article  Google Scholar 

  • Wu KS, van Osdol WW, Dauskardt RH (2006) Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomaterials 27: 785–795

    Article  Google Scholar 

  • Zeng Y, Xu C, Yang J, Sun G, Xu X (2003) Biomechanical comparison between conventional and rapid expansion of skin. Br Assoc Plast Surg 56: 660–666

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Kuhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zöllner, A.M., Buganza Tepole, A., Gosain, A.K. et al. Growing skin: tissue expansion in pediatric forehead reconstruction. Biomech Model Mechanobiol 11, 855–867 (2012). https://doi.org/10.1007/s10237-011-0357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-011-0357-4

Keywords

Navigation