Skip to main content
Log in

The Digital Imaging Workstation

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Picture archiving and communication systems (PACS) are expected to convert film-based radiology into a computer-based digital environment, with associated cost savings and improved physician communication. The digital workstation will be used by physicians to display these “soft-copy” images; however, difficult technical challenges must be met for the workstation to compete successfully with the familiar viewbox. Issues relating to image perception and the impact on physicians’ practice must be carefully considered. The spatial and contrast resolutions required vary according to imaging modality, type of procedure, and class of user. Rule-based software allows simple physician interaction and speeds image display. A consensus appears to be emerging concerning the requirements for the PACS workstation. Standards such as the American College of Radiology/National Electrical Manufacturers’ Association Digital Imaging and Communication Standard are facilitating commercial applications. Yet much careful study is needed before PACS workstations will be fully integrated into radiology departments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Seshadri SB, Arenson RL, DeSimone D, Hiss S: Cost-savings associated with a digital radiology department: a preliminary study. Presented at the Ninth Conference on Computer Applications in Radiology, Hilton Head, SC, June 1988

  2. JC Gee LA DeSoto Y Kim DR Haynor JW Loop (1989) ArticleTitleUser interface design for a radiological imaging workstation. SPIE Med Imaging III 1093 122–132

    Google Scholar 

  3. SE Braudes SK Mun J Sibert J Schnizlein S Horii (1989) ArticleTitleWorkstation modelling and development: clinical definition of a picture archiving and communication system (PACS) user interface. SPIE Med Imaging III 1093 376–386

    Google Scholar 

  4. GG Cox JH McMillan LH Wetzel EL Siegel AW Templeton SJ Dwyer III (1989) ArticleTitleDirect diagnosis from a 2,000 × 2,000 × 12-bit displays: comparison with hard copy (abstr). Radiology 173 IssueIDP 471

    Google Scholar 

  5. H MacMahon C Metz K Doi T Kim ML Giger H Chan (1988) ArticleTitleDigital chest radiography: effect on diagnostic accuracy of hard copy. Radiology 168 669–673 Occurrence Handle1:STN:280:BieA3cvlsVE%3D Occurrence Handle3406396

    CAS  PubMed  Google Scholar 

  6. K Yamasaki K Sato M Kusumoto S Adachi M Kuno (1989) ArticleTitleComparative studies of physical characteristics and clinical efficacy of digitized chest image (abstr). Radiology 173 IssueIDP 226

    Google Scholar 

  7. JW Oestmann R Greene JR Rubens et al. (1989) ArticleTitleHigh-frequency edge enhancement in the detection of fine pulmonary lines. Invest Radiol 24 643–646 Occurrence Handle1:STN:280:By%2BD3srpt1Y%3D Occurrence Handle2807816

    CAS  PubMed  Google Scholar 

  8. M Ishida PH Frank K Doi JL Lehr (1983) ArticleTitleHigh quality digital radiographic images: improved detection of low-contrast objects and preliminary clinical studies. RadioGraphics 3 325–338

    Google Scholar 

  9. ME Sheline I Brikman D Epstein J Mezrich HL Kundel RL Arenson (1989) ArticleTitleThe diagnosis of pulmonary nodules; comparison between standard and inverse digitized images and conventional chest radiographs. AJR 152 261–263 Occurrence Handle1:STN:280:BiaC3czgt1A%3D

    CAS  Google Scholar 

  10. TH Cornsweet HM Pensker (1965) ArticleTitleLuminance discrimination of brief flashes under various conditions of adaption. J Physiol (Lond) 176 294–310 Occurrence Handle1:STN:280:CCqD1M%2FptlQ%3D

    CAS  Google Scholar 

  11. WR Hendee (1983) The physical principles of computed tomography. Little Brown Boston

    Google Scholar 

  12. HL Kundel CF Nodine D Thickman D Carmody L Toto (1985) ArticleTitleNodule detection with and without a chest image. Invest Radiol 20 94–99 Occurrence Handle1:STN:280:BiqC2MnosFw%3D Occurrence Handle3980184

    CAS  PubMed  Google Scholar 

  13. CE Metz (1986) ArticleTitleROC methodology in radiologic imaging. Invest Radiol 21 720–733 Occurrence Handle1:STN:280:BiiD3s3nvFE%3D Occurrence Handle3095258

    CAS  PubMed  Google Scholar 

  14. WD Foley CR Wilson GS Keyes et al. (1981) ArticleTitleThe effect of varying spatial resolution on the detectability of diffuse pulmonary nodules. Radiology 141 25–31 Occurrence Handle1:STN:280:Bi2D3sfltlI%3D Occurrence Handle7291538

    CAS  PubMed  Google Scholar 

  15. K-H Huebener (1983) ArticleTitleScanned projection radiography of the chest versus standard film radiography: a comparison of 250 cases. Radiology 148 363–368 Occurrence Handle1:STN:280:BiyB2cfhtFA%3D Occurrence Handle6867326

    CAS  PubMed  Google Scholar 

  16. GW Seeley JD Newell (1985) ArticleTitleThe use of psychophysical principles in the design of a total digital radiology department. Radiol Clin North Am 23 341–348 Occurrence Handle1:STN:280:BiqC1M7jsVU%3D Occurrence Handle3991891

    CAS  PubMed  Google Scholar 

  17. H MacMahon CJ Vyborny CE Metz K Doi V Sabeti S Solomon (1986) ArticleTitleDigital radiography of subtle pulmonary abnormalities: an ROC study of the effect of pixel size on observer performance. Radiology 158 21–26 Occurrence Handle1:STN:280:BimD28fptlI%3D Occurrence Handle3940383

    CAS  PubMed  Google Scholar 

  18. PM Lams ML Cocklin (1986) ArticleTitleSpatial resolution requirements for digital chest radiographs: an ROC study of observer performance in selected cases. Radiology 158 11–19 Occurrence Handle1:STN:280:BimD28fptFI%3D Occurrence Handle3940365

    CAS  PubMed  Google Scholar 

  19. LR Goodman WD Foley DR Wilson AA Rimm TL Lawson (1986) ArticleTitleDigital and conventional chest images: observer performance with film digital radiography system. Radiology 158 27–33 Occurrence Handle1:STN:280:BimD28fpsFY%3D Occurrence Handle3940392

    CAS  PubMed  Google Scholar 

  20. DP Chakraborty ES Breatnach MV Yester B Soto GT Barnes R Fraser (1986) ArticleTitleDigital and conventional chest imaging: a modified ROC study of observer performance using simulated nodules. Radiology 158 35–39 Occurrence Handle1:STN:280:BimD28fpsFI%3D Occurrence Handle3940394

    CAS  PubMed  Google Scholar 

  21. LT Niklason NM Hickey DP Chakraborty et al. (1986) ArticleTitleSimulated pulmonary nodules: detection with dual energy digital versus conventional radiography. Radiology 160 589–593 Occurrence Handle1:STN:280:BimB1cjpslw%3D Occurrence Handle3526398

    CAS  PubMed  Google Scholar 

  22. DC Kushner RH Cleveland TE Herman et al. (1987) ArticleTitleLow-dose flying spot digital radiography of the chest: sensitivity studies. Radiology 163 685–688 Occurrence Handle1:STN:280:BiiB3crgsFc%3D Occurrence Handle3575715

    CAS  PubMed  Google Scholar 

  23. GT Barnes EA Sabbagh DP Chakraborty et al. (1989) ArticleTitleA comparison of dual-energy digital radiography and screen-film imaging in the detection of subtle interstitial pulmonary disease. Invest Radiol 24 585–591 Occurrence Handle1:STN:280:BiaA2sbms1I%3D Occurrence Handle2777526

    CAS  PubMed  Google Scholar 

  24. H Chan CJ Vyborny H MacMahon CE Metz K Doi EA Sickles (1987) ArticleTitleDigital mammography ROC studies of the effects of pixel size and unsharp-mask filtering on the detection of subtle microcalcifications. Invest Radiol 22 581–589 Occurrence Handle1:STN:280:BiiA3cjisV0%3D Occurrence Handle3623862

    CAS  PubMed  Google Scholar 

  25. JW Oestmann D Kopans DA Hall KA McCarthy JR Rubens R Greene (1988) ArticleTitleA comparison of digitized storage phosphors and conventional mammography in the detection of malignant microcalcifications. Invest Radiol 23 726–723

    Google Scholar 

  26. GW Seeley M Stempski H Roehrig S Nudelman MP Capp (October 1982) Psychophysical comparison of a video display system to film by using bone fracture images. Presented at the First International Symposium on Medical Imaging and Image Interpretation. Federal Republic of Germany Berlin

    Google Scholar 

  27. MD Murphey (1989) ArticleTitleDigital skeletal radiography: spatial resolution requirements for detection of subperiosteal resorption. AJR 152 541–546 Occurrence Handle1:STN:280:BiaC3s3itFY%3D

    CAS  Google Scholar 

  28. DJ Kastan LV Ackerman PJ Feczko (1987) ArticleTitleDigital gastrointestinal imaging: the effect of pixel size on detection of subtle mucosal abnormalities. Radiology 167 853–856

    Google Scholar 

  29. LL Fajardo BJ Hillman TB Hunter HR Claypool BR Westerman B Mockbee (1987) ArticleTitleExcretory urography using computed radiography. Radiology 162 345–351 Occurrence Handle1:STN:280:BiiD1M3ps10%3D Occurrence Handle3797646

    CAS  PubMed  Google Scholar 

  30. A Rose (1973) Vision, human and electronic. Plenum New York

    Google Scholar 

  31. RA Kruger CA Mistretta SJ Riederer (1981) ArticleTitlePhysical and technical considerations of computerized fluoroscopy difference imaging. IEEE Trans Nucl Sci NS28 205–212

    Google Scholar 

  32. D Rimkus NA Baily (1984) ArticleTitlePatient exposure requirements for high contrast resolution in digital radiographic systems. AJR 142 603–608 Occurrence Handle1:STN:280:BiuC38votFM%3D

    CAS  Google Scholar 

  33. LE Tannas (1985) Flat-panel displays and CRTs. Van Nostrand Reinhold New York

    Google Scholar 

  34. SA Suddarth GA Johnson RH Sherrier CE Ravin (1987) ArticleTitlePerformance of high-resolution monitors for digital chest imaging. Med Phys 14 253–257 Occurrence Handle10.1118/1.596079 Occurrence Handle1:STN:280:BiiB38flsFc%3D Occurrence Handle3587149

    Article  CAS  PubMed  Google Scholar 

  35. Johnston RE: Display monitors. Presented at the American Association of Physicists in Medicine Summer School in Image Communication and Image Analysis, Ann Arbor, Mien, July 12-17, 1987

  36. KG O’Malley JA Giunta (1988) ArticleTitleThe alternator: determination of its fundamental features, as a basis for design of a PACS. SPIE Med Imaging II 914 988–994

    Google Scholar 

  37. LR Kasaday (1986) ArticleTitleHuman factor considerations in PACS design. SPIE Med XIV PACS IV 626 581–592

    Google Scholar 

  38. DC Rogers RE Johnston B Brenton EV Staab B Thomson JR Perry (1985) ArticleTitlePredicting PACS console requirements from radiologists’ reading habits. SPIE PACS III 536 88–96

    Google Scholar 

  39. D Beard S Pizer D Rogers R Cromartie (1987) ArticleTitleA prototype single-screen PACS console development using human computer interaction techniques. SPIE Med Imaging 767 646–653

    Google Scholar 

  40. Johnston RE, Beard DV, Creasy JL, Perry JR: UNC PACS II: consoles. Presented at the Ninth Conference on Computer Applications in Radiology, Hilton Head, SC, June 1-4, 1988

  41. SB Lo SK Mun RE Braudes BA Levine (1989) ArticleTitleA workstation for rapid image presentation. SPIE Med Imaging III 1093–1098

    Google Scholar 

  42. InstitutionalAuthorNameHuman Factors Society (1988) American national standards for human factors engineering of visual display terminal workstations. Human Factors Society Santa Monica, Calif

    Google Scholar 

  43. F van der Voorde RL Arenson HL Kundel et al. (1986) ArticleTitleDevelopment of a physician friendly digital image display console. PACS IV 626 541–548

    Google Scholar 

  44. AJ Alter GA Kargas SA Kargas et al. (1982) ArticleTitleThe influence of ambient and viewbox light upon visual detection of low-contrast targets in a radiograph. Invest Radiol 17 402–406 Occurrence Handle1:STN:280:BiyD3s%2FhtFw%3D Occurrence Handle7129822

    CAS  PubMed  Google Scholar 

  45. DC Rogers RE Johnston (1987) ArticleTitleEffect of ambient light on electronically displayed medical images as measured by luminance-discrimination thresholds. J Opt Soc Am [A] 4 976–983 Occurrence Handle1:STN:280:BiiB2MzlsVY%3D

    CAS  Google Scholar 

  46. SB Seshadri RL Arenson SS Khalsa IS Brikman F van der Voorde (1987) ArticleTitlePrototype image management system (MIMS) at the University of Pennsylvania: software design considerations. SPIE Med Imaging 767 793–800

    Google Scholar 

  47. DR Haynor AO Saarinen (1989) ArticleTitle“Old study” and the correlative study: implications for PACS. SPIE Med Imaging III 1093 10–12

    Google Scholar 

  48. GG Cox AW Templeton WH Anderson LT Cook KS Hensley SJ Dwyer (1986) ArticleTitleEstimating digital information throughput rates for radiology networks. Invest Radiol 21 162–169 Occurrence Handle1:STN:280:BimC28jjtlc%3D Occurrence Handle3957590

    CAS  PubMed  Google Scholar 

  49. RL Arenson SB Seshadri F Stevens F van der Voorde (1987) The overlapping domains and interface between radiology information management systems and medical image management systems (PACS). Proceedings of computer assisted radiology. Springer-Verlag Berlin 855–865

    Google Scholar 

  50. RL Arenson SB Seshadri HL Kundel et al. (1988) ArticleTitleClinical evaluation of a medical image management system for chest images. AJR 150 55–59 Occurrence Handle1:STN:280:BieD2szns1c%3D

    CAS  Google Scholar 

  51. J Gershon-Cohen JF Fisher (1959) ArticleTitleTelevision contrast expansion of single roentgenograms. AJR 81 325–327 Occurrence Handle1:STN:280:CyaD2cjgvVI%3D

    CAS  Google Scholar 

  52. PH Meyers HC Becker JW Sweeney C Nice WJ Nettleton (1963) ArticleTitleEvaluation of a computer retrieved radiographic image. Radiology 201 83–85

    Google Scholar 

  53. R Nathan (1968) Picture enhancement for the moon, Mars, and man. GC Cheng RS Ledley DK Pollock A Rosenfeld (Eds) Pictorial pattern recognition. Thomson Washington, DC 239–266

    Google Scholar 

  54. HL Kundel G Revesz HM Stauffer (1969) ArticleTitleThe electro-optical processing of radiographic images. Radiol Clin North Am 8 447–460

    Google Scholar 

  55. CA Mistretta AB Crummy (1981) ArticleTitleDiagnosis of cardiovascular disease by digital subtraction angiography. Science 214 761–765 Occurrence Handle1:STN:280:Bi2D3sbmtVY%3D Occurrence Handle7292009

    CAS  PubMed  Google Scholar 

  56. M Ishida PH Frank K Doi JL Lehr (1982) ArticleTitleHigh quality digital radiographic images: improved detection of low-contrast objects and preliminary clinical studies. RadioGraphics 3 325–338

    Google Scholar 

  57. HL Kundel (1986) ArticleTitleVisual perception and image display terminals. Radiol Clin North Am 24 69–78 Occurrence Handle1:STN:280:BimC2sfjsFA%3D Occurrence Handle3961130

    CAS  PubMed  Google Scholar 

  58. WF Schreiber (1986) Fundamentals of electronic imaging systems. Springer-Verlag Berlin

    Google Scholar 

  59. SM Pizer FH Chan (1980) Evaluation of the number of discernible levels produced by a display. R Dipaola E Kahn (Eds) Information processing in medical imaging. Proceedings of the VIth International Conference on Information Processing in Medical Imaging. Vol 88. INSERM Paris

    Google Scholar 

  60. RC Cromartie RE Johnston SM Pizer D Rogers (1987) Standardization of electronic display devices based on human perception. University of North Carolina Department of Computer Science technical report 88-002. University of North Carolina Chapel Hill, NC

    Google Scholar 

  61. SM Pizer JB Zimmerman EV Staab (1984) ArticleTitleAdaptive grey level assignment in CT scan display. J Comput Assist Tomogr 8 300–305 Occurrence Handle1:STN:280:BiuC283osFY%3D Occurrence Handle6707283

    CAS  PubMed  Google Scholar 

  62. DL McShan AS Glickman (1987) Color displays for medical imaging in color and the computer. HJ Durrett (Eds) Color and the computer. Academic Press San Diego 189–204

    Google Scholar 

  63. FH Chan SM Pizer (1976) ArticleTitleAn ultrasonogram display system using natural color. JCU 4 335–338 Occurrence Handle1:STN:280:CSiD38bisFM%3D Occurrence Handle824313

    CAS  PubMed  Google Scholar 

  64. MW Vannier D Rickman (1989) ArticleTitleMultispectral and color-aided displays. Invest Radiol 24 88–91 Occurrence Handle1:STN:280:BiaC3sfpsVY%3D Occurrence Handle2645242

    CAS  PubMed  Google Scholar 

  65. DN DeSimone HL Kundel RL Arenson et al. (1988) ArticleTitleEffect of a digital imaging network on physician behavior in an intensive care unit. Radiology 169 41–44 Occurrence Handle1:STN:280:BieA3snkslU%3D Occurrence Handle3420281

    CAS  PubMed  Google Scholar 

  66. HA Swett PL Miller (1987) ArticleTitleICON: computer-based approach to differential diagnosis in radiology. Radiology 163 555–558 Occurrence Handle1:STN:280:BiiC2snksVY%3D Occurrence Handle3550885

    CAS  PubMed  Google Scholar 

  67. HW Fischer (1988) ArticleTitleDanger ahead (editorial). Radiology 169 267 Occurrence Handle1:STN:280:BieA3snksFM%3D

    CAS  Google Scholar 

  68. RL Arenson (1988) ArticleTitleOpportunity ahead (editorial response). Radiology 169 267–268 Occurrence Handle1:STN:280:BieA3snksFM%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arenson, R.L., Chakraborty, D.P., Seshadri, S.B. et al. The Digital Imaging Workstation . J Digit Imaging 16, 142–162 (2003). https://doi.org/10.1007/s10278-002-6004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-002-6004-y

Keywords

Navigation