Skip to main content

Advertisement

Log in

Sympathetic responses to repetitive trans-spinal magnetic stimulation

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

Electromagnetic fields have been administered, with mixed success, in order to treat a variety of ailments. Transcranial magnetic stimulation (TMS) elicits brief changes in peripheral sympathetic nervous system (SNS) activity. The purpose of this study was to explore the utility of repetitive trans-spinal magnetic stimulation (rTSMS) for acute and prolonged modulation of SNS in adult humans.

Methods

23 healthy men and women were randomly assigned to receive either rTSMS (figure-eight coil aligned with the sixth and seventh cervical vertebrae; 10 Hz; n = 14, at 100% intensity of stimulator output) or sham stimulation (n = 13).

Results

Compared with sham, rTSMS did not affect skeletal muscle SNS activity (via microneurography) during the 60-s or 10-min period following stimulation. rTSMS also had no effect on R-to-R interval (RRint) and standard deviation of RRint (a marker of heart rate variability), blood pressure or plasma concentrations of norepinephrine, epinephrine, insulin and glucose (condition/time interaction, all P > 0.10).

Conclusion

These data suggest that rTSMS does not influence SNS in adults. While rTSMS represents a novel application of TMS technology, further study and perhaps modification of the technique is required before use in clinical studies of peripheral SNS function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand S, Hotson J (2002) Transcranial magnetic stimulation: neurophysiological applications and safety. Brain Cogn 50:366–386

    Article  PubMed  Google Scholar 

  2. Bell C, Day DS, Jones PP, Christou DD, Petitt DS, Osterberg K, Melby CL, Seals DR (2004) High energy flux mediates the tonically augmented beta-adrenergic support of resting metabolic rate in habitually exercising older adults. J Clin Endocrinol Metab 89:3573–3578

    Article  PubMed  CAS  Google Scholar 

  3. Bell C, Jones PP, Seals DR (2003) Oxidative stress does not modulate metabolic rate or skeletal muscle sympathetic activity with primary aging in adult humans. J Clin Endocrinol Metab 88:4950–4954

    Article  PubMed  CAS  Google Scholar 

  4. Chen R, Gerloff C, Classen J, Wassermann EM, Hallett M, Cohen LG (1997) Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. Electromyogr Motor Control—Electroencephal Clin Neurophysiol 105:415–421

    Article  CAS  Google Scholar 

  5. Cohen LG, Roth BJ, Nilsson J, Dang N, Panizza M, Bandinelli S, Friauf W, Hallett M (1990) Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr Clin Neurophysiol 75:350–357

    Article  CAS  Google Scholar 

  6. Esler M (1995) Sympathetic nervous system: contribution to human hypertension and related cardiovascular diseases. J Cardiovasc Pharmacol 26:S24–S28

    PubMed  CAS  Google Scholar 

  7. Esler M, Lambert G, Brunner-La Rocca HP, Vaddadi G, Kaye D (2003) Sympathetic nerve activity and neurotransmitter release in humans: translation from pathophysiology into clinical practice. Acta Physiol Scand 177:275–284

    Article  PubMed  CAS  Google Scholar 

  8. Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J, Lambert G (2001) Sympathetic nervous system and insulin resistance: from obesity to diabetes. Am J Hypertens 14:304S–309S

    Article  PubMed  CAS  Google Scholar 

  9. Funk RH, Monsees T, Ozkucur N (2009) Electromagnetic effects - From cell biology to medicine. Prog Histochem Cytochem 43:177–264

    Article  PubMed  Google Scholar 

  10. Jehenson P, Duboc D, Lavergne T, Guize L, Guerin F, Degeorges M, Syrota A (1988) Change in human cardiac rhythm induced by a 2-T static magnetic field. Radiology 166:227–230

    PubMed  CAS  Google Scholar 

  11. Kiray A, Arman C, Naderi S, Guvencer M, Korman E (2005) Surgical anatomy of the cervical sympathetic trunk. Clin Anat 18:179–185

    Article  PubMed  CAS  Google Scholar 

  12. Kuipers NT, Sauder CL, Ray CA (2007) Influence of static magnetic fields on pain perception and sympathetic nerve activity in humans. J Appl Physiol 102:1410–1415

    Article  PubMed  Google Scholar 

  13. Landsberg L (1990) Insulin resistance, energy balance and sympathetic nervous system activity. Clin Exp Hypertens A 12:817–830

    Article  PubMed  CAS  Google Scholar 

  14. Li YF, Patel KP (2003) Paraventricular nucleus of the hypothalamus and elevated sympathetic activity in heart failure: the altered inhibitory mechanisms. Acta Physiol Scand 177:17–26

    Article  PubMed  CAS  Google Scholar 

  15. Lonac MC, Richards JC, Schweder MM, Johnson TK, and Bell C (2010) Influence of short-term consumption of the caffeine-free, epigallocatechin-3-gallate supplement, Teavigo, on resting metabolism and the thermic effect of feeding. Obesity (in press)

  16. Macefield VG, Taylor JL, Wallin BG (1998) Inhibition of muscle sympathetic outflow following transcranial cortical stimulation. J Auton Nerv Syst 68:49–57

    Article  PubMed  CAS  Google Scholar 

  17. Mayrovitz HN, Groseclose EE (2005) Effects of a static magnetic field of either polarity on skin microcirculation. Microvasc Res 69:24–27

    Article  PubMed  Google Scholar 

  18. Mills KR, Murray NM (1986) Electrical stimulation over the human vertebral column: which neural elements are excited? Electroencephalogr Clin Neurophysiol 63:582–589

    Article  PubMed  CAS  Google Scholar 

  19. Monroe MB, Seals DR, Shapiro LF, Bell C, Johnson D, Jones PP (2001) Direct evidence for tonic sympathetic support of resting metabolic rate in healthy adult humans. Am J Physiol Endocrinol Metab 280:E740–E744

    PubMed  CAS  Google Scholar 

  20. Newsom SA, Paxton RJ, Rynn GM, Bell C (2008) Influence of ascorbic acid on the thermic effect of feeding in overweight and obese adult humans. Obesity (Silver Spring) 16:1749–1754

    Article  CAS  Google Scholar 

  21. Newsom SA, Richards JC, Johnson TK, Kuzma JN, Lonac MC, Paxton RJ, Rynn GM, Voyles WF, Bell C (2010) Short-term sympathoadrenal inhibition augments the thermogenic response to beta-adrenergic receptor stimulation. J Endocrinol 206:307–315

    Article  PubMed  CAS  Google Scholar 

  22. Ng AV, Callister R, Johnson DG, Seals DR (1994) Sympathetic neural reactivity to stress does not increase with age in healthy humans. Am J Physiol 267:H344–H353

    PubMed  CAS  Google Scholar 

  23. Niehaus L, Guldin B, Meyer B (2001) Influence of transcranial magnetic stimulation on pupil size. J Neurol Sci 182:123–128

    Article  PubMed  CAS  Google Scholar 

  24. Nonogaki K (2000) New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43:533–549

    Article  PubMed  CAS  Google Scholar 

  25. Pascualleone A, Houser CM, Reese K, Shotland LI, Grafman J, Sato S, Vallssole J, Brasilneto JP, Wassermann EM, Cohen LG, Hallett M (1993) safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol 89:120–130

    Article  CAS  Google Scholar 

  26. Paxton RJ, Malcolm MP, Newsom SA, Rynn GM, Maddox HW, Strevey D, Little SK, Richards JC, Supon RJ, Heulin KR, and Bell C (2008) Manipulation of the sympathetic nervous system with repetitive trans-spinal magnetic stimulation in healthy adult humans. FASEB J 22:1195–1196

    Google Scholar 

  27. Pieber K, Herceg M, Paternostro-Sluga T (2010) Electrotherapy for the treatment of painful diabetic peripheral neuropathy: a review. J Rehabil Med 42:289–295

    Article  PubMed  Google Scholar 

  28. Richards JC, Johnson TK, Kuzma JN, Lonac MC, Schweder MM, Voyles WF, Bell C (2010) Short-term sprint interval training increases insulin sensitivity in healthy adults but does not affect the thermogenic response to beta-adrenergic stimulation. J Physiol 588:2961–2972

    Google Scholar 

  29. Romagnano MA, Hamill RW (1984) Spinal sympathetic pathway: an enkephalin ladder. Science 225:737–739

    Article  PubMed  CAS  Google Scholar 

  30. Seals DR, Bell C (2004) Chronic sympathetic activation: consequence and cause of age-associated obesity? Diabetes 53:276–284

    Article  PubMed  CAS  Google Scholar 

  31. Seals DR, Esler MD (2000) Human ageing and the sympathoadrenal system. J Physiol 528:407–417

    Article  PubMed  CAS  Google Scholar 

  32. Sharma AM, Pischon T, Hardt S, Kunz I, Luft FC (2001) Hypothesis: Beta-adrenergic receptor blockers and weight gain: a systematic analysis. Hypertension 37:250–254

    PubMed  CAS  Google Scholar 

  33. Silber DH, Sinoway LI, Leuenberger UA, Amassian VE (2000) Magnetic stimulation of the human motor cortex evokes skin sympathetic nerve activity. J Appl Physiol 88:126–134

    PubMed  CAS  Google Scholar 

  34. Stauss HM (2003) Heart rate variability. Am J Physiol Regul Integr Comp Physiol 285:R927–R931

    PubMed  CAS  Google Scholar 

  35. van Baak MA (2001) The peripheral sympathetic nervous system in human obesity. Obes Rev 2:3–14

    Article  PubMed  Google Scholar 

  36. Wallin BG, Fagius J (1988) Peripheral sympathetic neural activity in conscious humans. Annu Rev Physiol 50:565–576

    Article  PubMed  CAS  Google Scholar 

  37. Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation, June 5–7, 1996. Evoked Potentials—Electroencephalogr Clin Neurophysiol 108:1–16

    Article  CAS  Google Scholar 

  38. Wrobel MP, Szymborska-Kajanek A, Wystrychowski G, Biniszkiewicz T, Sieron-Stoltny K, Sieron A, Pierzchala K, Grzeszczak W, Strojek K (2008) Impact of low frequency pulsed magnetic fields on pain intensity, quality of life and sleep disturbances in patients with painful diabetic polyneuropathy. Diabetes Metab 34:349–354

    Article  PubMed  CAS  Google Scholar 

  39. Yoshida T, Yoshino A, Kobayashi Y, Inoue M, Kamakura K, Nomura S (2001) Effects of slow repetitive transcranial magnetic stimulation on heart rate variability according to power spectrum analysis. J Neurol Sci 184:77–80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by awards from the National Institutes of Health (NIA AG022053) and the College of Applied Human Sciences at Colorado State University. We thank the Clinical Translation Research Center at Pennsylvania State University, Hershey, PA and the University of Colorado Denver for assistance with plasma catecholamine analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Bell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paxton, R.J., Malcolm, M.P., Newsom, S.A. et al. Sympathetic responses to repetitive trans-spinal magnetic stimulation. Clin Auton Res 21, 81–87 (2011). https://doi.org/10.1007/s10286-010-0092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-010-0092-4

Keywords

Navigation