Skip to main content
Log in

The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe: a comparative group study of deactivation of the Default Mode

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

To quantify the gain in time-series SNR that can be achieved in the amygdala by reducing EPI voxel size, and to assess the extent to which this advantage is carried through to statistical significance in a group fMRI study, using a cognitive task to trigger task-independent deactivation of anterior medial temporal structures.

Materials and methods

Two groups of seven subjects were posed number-series tasks to induce deactivation of the Default Mode network. This is known from PET work to include the amygdala, which lies in a region of high magnetic field gradient. In 3 T imaging, one group was studied with high resolution EPI with 6 μl voxels, the other with lower resolution EPI with 17 μl voxels. Field maps were acquired to allow field gradients in relevant ROIs to be assessed.

Results

Time-series SNR was 45% higher in the amygdala in the high resolution EPI data than in the low resolution data. In activation results, whilst there was good agreement between other areas, the involvement of the amygdala could only be demonstrated in the high resolution data.

Conclusion

We find that reduction in signal dephasing afforded by high resolution EPI is realized as a substantial increase in SNR and BOLD sensitivity in group fMRI data. This has allowed the first demonstration of the involvement of the amygdala in the Default Mode in fMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barth M, Windischberger C, Klarhofer M, Moser E (2001) Characterization of BOLD activation in multi-echo fMRI data using fuzzy cluster analysis and a comparison with quantitative modeling. NMR Biomed 14: 484–489

    Article  PubMed  CAS  Google Scholar 

  2. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14: 68–78

    Article  PubMed  CAS  Google Scholar 

  3. Merboldt KD, Fransson P, Bruhn H, Frahm J (2001) Functional MRI of the human amygdala?. Neuroimage 14: 253–257

    Article  PubMed  CAS  Google Scholar 

  4. Hyde S, Biswal B, Jesmanowicz A (2001) High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 46: 114–125

    Article  PubMed  CAS  Google Scholar 

  5. Young IR, Cox IJ, Bryant DJ, Bydder GM (1988) The benefits of increasing spatial resolution as a means of reducing artifacts due to field inhomogeneities. Magn Reson Imaging 6: 585–590

    Article  PubMed  CAS  Google Scholar 

  6. Merboldt KD, Finsterbusch J, Frahm J (2000) Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 145: 184–191

    Article  PubMed  CAS  Google Scholar 

  7. Chen N, Dickey CC, Guttman CRG, Panych LP (2003) Selection of voxel size and slice orientation for fMRI in the presence of susceptibility field gradients: application to imaging of the amygdala. Neuroimage 19: 817–825

    Article  PubMed  Google Scholar 

  8. Robinson S, Windischberger C, Rauscher A, Moser E (2004) Optimized 3T EPI of the amygdalae. Neuroimage 22: 203–210

    Article  PubMed  CAS  Google Scholar 

  9. Frahm J, Merboldt K, Hänicke W (1993) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29: 139–144

    Article  PubMed  CAS  Google Scholar 

  10. Shmuel A, Yacoub E, Chaimow D, Logothetis NK, Ugurbil K (2007) Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. Neuroimage 35: 539–552

    Article  PubMed  Google Scholar 

  11. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26: 243–250

    Article  PubMed  CAS  Google Scholar 

  12. Triantafyllou C, Hoge RD, Wald LL (2006) Effect of spatial smoothing on physiological noise in high-resolution fMRI. Neuroimage 32: 551–557

    Article  PubMed  Google Scholar 

  13. Chen W, Ugurbil K (1999) High spatial resolution functional magnetic resonance imaging at very-high-magnetic field. Top Magn Reson Imaging 10: 63–78

    Article  PubMed  CAS  Google Scholar 

  14. Morawetz C, Holz P, Lange C, Baudewig J, Weniger G, Irle E, Dechent P (2008) Improved functional mapping of the human amygdala using a standard functional magnetic resonance imaging sequence with simple modifications. Magn Reson Imaging 26: 45–53

    Article  PubMed  Google Scholar 

  15. Robinson S, Moser E (2004) Positive results in amygdala fMRI: emotion or head motion?. Neuroimage 22(Suppl 1): 294

    Google Scholar 

  16. Haacke E, Brown R, Thompson M, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York, p 340

    Google Scholar 

  17. Scouten A, Papademetris X, Constable RT (2006) Spatial resolution, signal-to-noise ratio, and smoothing in multi-subject functional MRI studies. Neuroimage 30: 787–793

    Article  PubMed  CAS  Google Scholar 

  18. Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19: 430–441

    Article  PubMed  CAS  Google Scholar 

  19. Weiskopf N, Hutton C, Josephs O, Turner R, Deichmann R (2007) Optimized EPI for fMRI studies of the orbitofrontal cortex: compensation of susceptibility-induced gradients in the readout direction. Magn Reson Mater Phys 20: 39–49

    Article  Google Scholar 

  20. Parrish T, Gitelman D, LaBar K, Mesulam M (2000) Impact of signal-to-noise on functional MRI. Magn Reson Med 44: 925– 932

    Article  PubMed  CAS  Google Scholar 

  21. LaBar K, Gitelman D, Mesulam M, Parrish T (2001) Impact of signal-to-noise on functional MRI of the human amygdala. Neuroreport 12: 3461–3464

    Article  PubMed  CAS  Google Scholar 

  22. Ekman P, Friesen W (1976) Pictures of facial affect. Consulting Psychologists Press, Palo Alto

    Google Scholar 

  23. Gur RC, Sara R, Hagendoorn M, Marom O, Hughett P, Macy L, Turner T, Bajcsy R, Posner A, Gur RE (2002) A method for obtaining 3-dimensional facial expressions and its standardization for use in neurocognitive studies. J Neurosci Methods 115: 137–143

    Article  PubMed  Google Scholar 

  24. The International Affective Picture System: Digitized Photographs (1999) Center for the Study of Emotion and Attention (CSEA-NIMH). University of Florida, Gainesville, FL

  25. Breiter H, Etcoff N, Whalen P, Kennedy W, Rauch S, Buckner R, Strauss M, Hyman S, Rosen B (1996) Response and habituation of the human amygdala during visual processing of facial expression. Neuron 17: 875–887

    Article  PubMed  CAS  Google Scholar 

  26. Fischer H, Wright C, Whalen P, McInerney S, Shin L, Rauch S (2003) Brain habituation during repeated exposure to fearful and neutral faces: a functional MRI study. Brain Res Bull 59: 387–392

    Article  PubMed  Google Scholar 

  27. Wedig M, Rauch S, Albert M, Wright C (2005) Differential amygdala habituation to neutral faces in young and elderly adults. Neurosci Lett 385: 114–119

    Article  PubMed  CAS  Google Scholar 

  28. Wright C, Fischer H, Whalen P, McInerney S, Shin L, Rauch S (2001) Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. Neuroreport 12: 379–383

    Article  PubMed  CAS  Google Scholar 

  29. Greicius M, Menon V (2004) Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci 16: 1484–1492

    Article  PubMed  Google Scholar 

  30. Shulman G, Fiez J, Corbetta M, Buckner R, Miezin F, Raichle M, Petersen S (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9: 648–663

    Article  Google Scholar 

  31. Bauer H, Pripfl J, Lamm C, Prainsack C, Taylor N (2003) Functional neuroanatomy of learned helplessness. Neuroimage 20: 927–939

    Article  PubMed  Google Scholar 

  32. Windischberger C, Robinson S, Rauscher A, Barth M, Moser E (2004) Robust field map generation using a triple-echo acquisition. J Magn Reson Imaging 20: 730

    Article  PubMed  Google Scholar 

  33. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10: 120–131

    Article  PubMed  CAS  Google Scholar 

  34. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1): S208–S219

    Article  PubMed  Google Scholar 

  35. Raichle M, MacLeod A, Snyder A, Powers W, Gusnard D, Shulman G (2001) A default mode of brain function. Proc Natl Acad Sci USA 98: 676–682

    Article  PubMed  CAS  Google Scholar 

  36. Stefanovic B, Warnking J, Pike G (2004) Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22: 771–778

    Article  PubMed  Google Scholar 

  37. Norris DG, Zysset S, Mildner T, Wiggins CJ (2002) An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching task and EPI at 3 T. Neuroimage 15: 719–726

    Article  PubMed  Google Scholar 

  38. Klarhofer M, Barth M, Moser E (2002) Comparison of multi-echo spiral and echo planar imaging in functional MRI. Magn Reson Imaging 20: 359–364

    Article  PubMed  Google Scholar 

  39. Gorno-Tempini M, Hutton C, Josephs O, Deichmann R, Price C, Turner R (2002) Echo time dependence of BOLD contrast and susceptibility artifacts. Neuroimage 15: 136–142

    Article  PubMed  Google Scholar 

  40. Constable RT, Spencer DD (2001) Repetition time in echo planar functional MRI. Magn Reson Med 46: 748–755

    Article  PubMed  CAS  Google Scholar 

  41. Lutcke H, Merboldt KD, Frahm J (2006) The cost of parallel imaging in functional MRI of the human brain. Magn Reson Imaging 24: 1–5

    Article  PubMed  Google Scholar 

  42. Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38: 296–302

    Article  PubMed  CAS  Google Scholar 

  43. Stocker T, Kellermann T, Schneider F, Habel U, Amunts K, Pieperhoff P, Zilles K, Shah NJ (2006) Dependence of amygdala activation on echo time: results from olfactory fMRI experiments. Neuroimage 30: 151–159

    Article  PubMed  Google Scholar 

  44. Posse S, Wiese S, Gembris D, Mathiak K, Kessler C, Grosse-Ruyken ML, Elghahwagi B, Richards T, Dager SR, Kiselev VG (1999) Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging. Magn Reson Med 42: 87–97

    Article  PubMed  CAS  Google Scholar 

  45. Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage 33: 493–504

    Article  PubMed  Google Scholar 

  46. Robinson S, Moser E, Peper M (2008) fMRI of Emotion. In: Filippi M (ed) fMRI techniques and protocols. Humana Press, New Jersey (in press)

  47. Greicius M, Krasnow B, Reiss A, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253–258

    Article  PubMed  CAS  Google Scholar 

  48. Burton H, Snyder A, Raichle M (2004) Default brain functionality in blind people. Proc Natl Acad Sci USA 101: 15500–15505

    Article  PubMed  CAS  Google Scholar 

  49. Calhoun V, Adali T, Stevens M, Kiehl K, Pekar J (2005) Semi-blind ICA of fMRI: a method for utilizing hypothesis-derived time courses in a spatial ICA analysis. Neuroimage 25: 527–538

    Article  PubMed  CAS  Google Scholar 

  50. Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26: 15–29

    Article  PubMed  Google Scholar 

  51. McKiernan K, Kaufman J, Kucera-Thompson J, Binder J (2003) A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15: 394–408

    Article  PubMed  Google Scholar 

  52. Nagai Y, Critchley H, Featherstone E, Trimble M, Dolan R (2004) Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a “default mode” of brain function. Neuroimage 22: 243–251

    Article  PubMed  CAS  Google Scholar 

  53. vande Ven V, Formisano E, Prvulovic D, Roeder C, Linden D (2004) Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp 22: 165–178

    Article  PubMed  Google Scholar 

  54. De Panfilis C, Schwarzbauer C (2005) Positive or negative blips? The effect of phase encoding scheme on susceptibility-induced signal losses in EPI. Neuroimage 25: 112–121

    Article  PubMed  Google Scholar 

  55. Griswold M, Jakob P, Chen Q, Goldfarb J, Manning W, Edelman R, Sodickson D (1999) Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med 41: 1236–1245

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewald Moser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, S.D., Pripfl, J., Bauer, H. et al. The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe: a comparative group study of deactivation of the Default Mode. Magn Reson Mater Phy 21, 279–290 (2008). https://doi.org/10.1007/s10334-008-0128-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-008-0128-0

Keywords

Navigation